Spätestens seit Aufkommen der mRNA-Impfstoffe haben viele zumindest eine grobe Ahnung, was RNA ist. Aber es gibt nicht nur die mRNA, denn eigentlich ist die mRNA – wenn auch die prominenteste der RNA-Arten – deutlich in der Minderheit. Tatsächlich sind 98% aller RNA von Eukaryoten (das heißt Lebewesen mit Zellkern) sogenannte nicht-codierende RNA. Daher sind die nicht-codierenden RNAs meine Biomoleküle des Monats, und in diesem Text werden wir uns diese zu wenig beachteten 98% der RNA etwas genauer anschauen.

mRNA und Translation

Aber beginnen wir doch trotzdem kurz mit der mRNA. Das „m“ steht hier für messenger und genau das ist die mRNA. Sie transportiert die Information über den Aufbau von Proteinen, die auf der DNA gespeichert ist, zu den Ribosomen. Die wiederum übersetzen diese Information dann in einem Translation genannten Prozess in ein Protein. Daher ist die mRNA auch codierende RNA – sie codiert Informationen für den Aufbau von Proteinen.

Für die Translation werden klassischerweise noch zwei anderen Typen von RNA gebraucht: die ribosomale rRNA und die transfer- tRNA. Das sind schon die ersten beiden nicht-codierenden RNAs, denn sie tragen keine Information über die Aminosäuresequenz eines Proteins. Stattdessen ist die rRNA Bestandteil der Ribosomen und die tRNA transportiert die Aminosäuren zum Ribosom und macht die eigentliche „Übersetzungsarbeit“ von mRNA zu Protein.

Dreidimensionale Struktur einer tRNA . Ganz unten, an der “Spitze” befindet sich das Anticodon, das an die mRNA bindet und eine bestimmte Abfolge von drei Basen erkennt (S. cerevisiae Phe-tRNA, PDB 1EHZ)

“Die RNA ist keine Wäscheleine”

Bevor wir uns die anderen nicht-codierenden RNAs anschauen, müssen wir kurz klären, was RNA eigentlich ist: RNA ist eine Nukleinsäure – die Abkürzung RNA steht für ribonucleic acid – und besteht wie die DNA aus einem Zucker-Phosphat-Rückgrat und einer Abfolge von Basen, die bei der mRNA die Information codiert.

Der Unterschied zur DNA besteht in dem Zucker – Ribose statt 2‘-Desoxyribose – und in einer Base – Uracil statt Thymin. Einige Arten von RNA beinhalten aber tatsächlich noch andere, seltenere Basen. Außerdem ist RNA keine Doppelhelix sondern liegt typischerweise einzelsträngig vor. Aber, wie mein Biolehrer in der Schule immer sagte, „die RNA ist keine Wäscheleine“. Stattdessen bildet auch sie lokale Strukturen und Basenpaarungen mit komplementären Basen (U und A sowie C und G) des gleichen oder eines anderen RNA-Strangs.

Aufbau der RNA aus Zucker-Phosphat-Rückgrat und Basen

Und RNAs, die an komplementäre RNA-Stränge binden können, sind weitere wichtige nicht-codierende RNAs.

Interferenz – Kontrolle der Genexpression

Sowohl miRNAs (mi für micro) als auch siRNAs (si für small interfering) machen sich die Bindung an komplementäre mRNA zunutze, um die Genexpression – also die tatsächliche Umsetzung der genetischen Information in ein Protein – zu regulieren.

miRNAs sind genetisch codiert und nach einem relativ komplizierten Herstellungsprozess entsteht ein doppelsträngiges Stück RNA, die reife miRNA. Zusammen mit einigen Protein kann einer dieser RNA-Stränge einen miRISC genannten Komplex bilden. Die miRNA in miRISC kann jetzt an eine komplementäre Stelle in einem mRNA-Strang binden. Typischerweise findet diese Bindung in einem Teil der mRNA statt, die 3‘-untranslatierte Region genannt wird und keine Information über den Aufbau eines Proteins trägt. Die Bindung von miRNA und RISC führt dann dazu, dass der mRNA-Strang abgebaut wird, und das darauf codierte Protein wird nicht hergestellt. Das geschieht, indem die schützenden Enden der mRNA – 3‘-poly-A-Ende und 5‘-cap – entfernt werden. Ohne diesen Schutz ist mRNA in einer Zelle extrem instabil und wird sehr schnell zerstört.

RISC aus einem Protein (blau) und miRNA gebunden and eine mRNA (beides rot) (PDB 6N4O)

Da die Biologie in den allermeisten Fällen effizient ist und Mechanismen für unterschiedliche Dinge verwendet – was für uns dann oft chaotisch erscheint – ist das nicht die einzige Funktion der miRNA: Sie kann auch die Translation gebundener mRNA hemmen, oder sogar die Genexpression direkt an der DNA im Zellkern beeinflussen.

Ganz ähnlich funktioniert die siRNA. Ihre Biosynthese ist zwar etwas anders, aber auch sie bildet RISCs, die bestimmte mRNA-Stränge erkennen und diese zerstören oder anderweitig ihre Translation verhindern. Durch die komplementäre Basenpaarung der mi- oder siRNA mit ihrer Ziel-mRNA ist dieser Regulationsmechanismus sehr spezifisch.

Diese Spezifität kann man auch für die Arzneitherapie nutzen. Es ist möglich, ganz gezielt Gene, die in eine Erkrankung involviert sind, abzuschalten. Givosiran beispielsweise ist ein siRNA-basierter Arzneistoff, der zur Behandlung der akuten intermittierenden Porphyrie verwendet wird – über Porphyrien habe ich in meinem Text über Häm ein wenig geschrieben. Das gleiche Prinzip wird häufig in der Molekularbiologie verwendet: Durch das Abschalten eines bestimmten Genes kann z.B. dessen Rolle in einem biologischen Prozess untersucht werden.

Ribozyme

Obwohl das noch lange nicht alle nicht-codierenden RNAs waren, möchte ich zum Abschluss nur noch eine davon erwähnen: die Ribozyme. Ribozyme sind RNA-Moleküle, die chemische Reaktionen katalysieren können, ganz genauso wie die bekannteren und häufigeren Enzyme. Ein Beispiel habe ich weiter oben sogar schon einmal erwähnt. Denn manche rRNAs, aus der Ribosomen aufgebaut sind, besitzen katalytische Aktivität und fügen die Aminosäuren eines gerade entstehenden Proteins zusammen.

Ribozyme sind außerdem eine wichtige Stütze der RNA-Welt-Hypothese. Sie besagt, dass die frühesten Lebewesen auf RNA sowohl als Informationsspeicher als auch zur Katalyse von Reaktionen basierten. Diese Aufgaben werden in allen modernen Lebensformen vorranging von DNA bzw.  Proteinen übernommen, womit die Ribozyme eine Art „Überbleibsel“ der RNA-Welt sein könnten. (Eine sehr anschauliche, aber nicht wirklich zutreffende Beschreibung von Ribozymen wären Fossilien aus der RNA-Welt.)

Das war jetzt also ein kurzer Rundumschlag zu den 98% der RNA, die keine mRNA sind. Es gäbe – wie bei fast jedem Thema – noch so viel mehr zu sagen, aber das muss dann wohl bis zu einem anderen Blogpost warten. Und falls ihr keine neuen Beiträge mehr verpassen wollt, dann abonniert doch gerne meinen Email-Newsletter.