Ein Blog über die Wissenschaft hinter Arzneimitteln

Category: Biochemie (Page 1 of 3)

AlphaFold – Was kann die “Wunder-KI” wirklich?

Vor einigen Tagen wurde AlphaFold 3 veröffentlicht, ein KI-Werkzeug zur Vorhersage von Proteinstrukturen. Die Zeit schreibt dazu „Eine KI die wirklich hilft“ oder „KI sagt Struktur aller Moleküle des Lebens voraus“, der Standard nennt es die “Wunder-KI“. Auch in der Wissenschaft ist das Lob für die Fähigkeiten von AlphaFold groß, es gibt jedoch auch einige skeptische Stimmen.

Aber was ist AlphaFold eigentlich genau, was bringt es und was kann es wirklich? Darauf werde ich in diesem Text einen kritischen Blick werfen.

Wieso sind Proteinstrukturen so wichtig?

Eins erstmal vorneweg: AlphaFold und andere KIs zur Vorhersage von Proteinstrukturen sind extrem beeindruckend. Die dreidimensionale Struktur von Proteinen ist kompliziert, und eine Möglichkeit, sie verlässlich vorherzusagen, war lange ein unerfüllbarer Traum. Aber wie verlässlich sind diese KIs wirklich? Wie funktioniert das? Und vor allem, für was brauchen wir diese Proteinstrukturen überhaupt?

Beschäftigen wir uns zuerst mit der letzten dieser Fragen: Wofür brauchen wir die Struktur von Proteinen? Im Prinzip ist es ganz einfach, denn die Struktur bestimmt bei Proteinen zum Großteil die Funktion.

Proteine bestehen aus Aminosäuren, die eine hinter der anderen aufgereiht sind. Davon gibt es – mit ein paar Ausnahmen – 20 Stück. Würden die alle nur in einer langen Kette aneinander hängen, wären die möglichen Fähigkeiten von Proteinen sehr begrenzt. Wenn wir uns aber echte Proteine anschauen, können die jedoch sehr, sehr viel. Sie können als Enzyme biochemische Reaktionen katalysieren, sie können als Rezeptoren Botenstoffe erkennen, sie können als Transporter Stoffe über Zellmembranen transportieren und sie können Festigkeit und Halt geben – denkt da nur an eure Nägel.

Diese Fähigkeiten von Proteinen entstehen dadurch, dass ihre 3D-Struktur die richtigen Aminosäuren an die richtige Stelle bringt. Dort können sie dann miteinander und ihrer Umgebung interagieren und beispielsweise eine Bindetasche für andere Moleküle bilden.

Wenn wir also verstehen wollen, wie Proteine funktionieren – und das müssen wir vor allem auch, weil darauf die meisten unserer Arzneimittel basieren – müssen wir ihre Struktur verstehen.

Was ist AlphaFold 3?

Kommen wir jetzt zum „Star“ dieses Textes – AlphaFold. AlphaFold ist ein KI-Werkzeug zur a priori Vorhersage von Proteinstrukturen (seit AlphaFold 3 werden aber auch andere Biomoleküle wie z.B. DNA besser unterstützt). Aus der Aminosäure-Sequenz eines beliebigen Proteins kann also dessen Struktur vorhergesagt werden.

Überlagerung einer experimentellen Struktur (blau) des Proteins Albumin und Vorhersage von AlphaFold3 (gelb). Vorhersage und experimentelle Struktur stimmen ziemlich gut überein. (Struktur: PDB 1AO6, 10.1093/protein/12.6.439)

Diese Struktur kann dann zum Beispiel zur Entwicklung neuer Arzneistoffe verwendet werden. Denn gerade dafür braucht man oft ein genaues Bild davon, wie der Wirkstoff an das Protein bindet und mit welchen Aminosäuren er dort interagiert. Und man muss wirklich zugeben, dass AlphaFold erstaunlich gut ist. Wie schon gesagt ist die dreidimensionale Struktur von Proteinen eine komplizierte Angelegenheit und bei vielen Proteinen stimmen die Vorhersage und die experimentell bestimmte Struktur sehr gut überein. Allerdings ist AlphaFold lange nicht perfekt, auch nicht seit AlphaFold 3. Genauso wie es bestimmte Stärken hat, hat es auch Schwächen, die meiner Einschätzung nach sehr schwierig zu überwinden sein werden. Vieles davon wird in diesem Paper von 2023 schön zusammengefasst.

Unerwartetes entdecken

Einer der Hauptgründe, weshalb AlphaFold so gut ist, ist die Qualität der Trainingsdaten. Wie ChatGPT zum Beispiel ist AlphaFold auch ein sogenanntes large language model, also eigentlich ein Sprachmodell. Nur ist die Sprache, die AlphaFold spricht, eben keine Menschliche, sondern die „Sprache“ der Aminosäuren. Aber genau wie bei ChatGPT, das mit einer Unzahl von Texten trainiert wurde, braucht auch AlphaFold Trainingsdaten. Und hier hatten die Entwickler:innen enormes Glück, denn es existieren sehr viele, sehr gute experimentell bestimmte Proteinstrukturen, die frei zugänglich sind. Ohne diese Daten, die in Jahrzehnten strukturbiologischer Arbeit gewonnen wurden, wäre AlphaFold nicht möglich gewesen.

Das führt allerdings auch dazu, dass AlphaFold Schwierigkeiten damit hat, Unbekanntes oder Unerwartetes zu entdecken – es funktioniert ja auch durch den Vergleich mit bekannten Strukturen. Eine der großen Stärken experimenteller Methoden, solche unerwarteten Strukturmotive, Cofaktoren, Ionen oder Modifikationen zu entdecken ist damit eine der Schwächen AlphaFolds. Und die eigentlich unerwarteten Dinge sind eben oftmals die interessantesten.

Flexible Proteine sind ein Problem

Besonders gut sind die Vorhersagen von AlphaFold bei Proteinen (oder Teilen von Proteinen), die eine sehr stabile und gut definierte Struktur haben – so wie Helices und β-Faltblätter, für diejenigen von euch, die sich auskennen. Aber 30 % aller (eukaryotischer) Proteine besitzen Regionen, die man als intrinsically disordered bezeichnet und die im Prinzip gar keine festgelegte Struktur besitzen. Einige Protein sind sogar komplett intrinsically disordered und besitzen kaum stabile Strukturmotive. Solche flexiblen Proteine und Regionen bereiten der Strukturbiologie seit jeher Probleme, sei es experimentell oder via KI.

Vorhersage der Struktur des M2-Acetylcholinrezeptors. Die Farben stellen die Zuverlässigkeit der Vorhersage dar: blau – sehr hoch, hellblau – hoch, gelb – niedrig, orange – sehr niedrig. Die Zuverlässigkeit ist vor allem in gut strukturierten Bereichen hoch, während sie in flexiblen Bereichen niedrig bis sehr niedrig ist.

Es ist aber auch möglich, dass sich aus einer flexiblen Region kurzzeitig eine stabile Konformation (so werden definierte Proteinstrukturen auch bezeichnet) ergibt. Solche induzierten Konformationen entstehen häufig durch Wechselwirkungen mit z.B. anderen Proteinen. AlphaFold trifft seine Vorhersagen rein aus der Aminosäuresequenz eines Proteins und „weiß“ nichts über dessen physikochemische Eigenschaften. Es kann also auch nicht vorhersagen, welche Auswirkungen solche Wechselwirkungen auf die Struktur eines Proteins haben und erkennt die induzierte Konformation möglicherweise nicht.

Proteine sind ständig in Bewegung

Worauf physikochemische Wechselwirkungen noch einen großen Einfluss haben ist die Bewegung – die Dynamik – eines Proteins. AlphaFold liefert statische Bilder einer Proteinstruktur, aber eigentlich sind Proteine ständig in Bewegung und wechseln zwischen unterschiedlichen Konformationen hin und her. Das ist zum Beispiel der Fall, wenn ein Signalmolekül an ein Rezeptorprotein bindet; um dieses Signal weiterzuleiten muss der Rezeptor seine Struktur etwas verändern. Solche Unterschiede zwischen aktiver und inaktiver Form eines Proteins stellen für die Vorhersage der Struktur immer noch ein Problem dar und häufig erhält man eine Mischung aus beiden Möglichkeiten.

Überlagerung eines Proteinkomplex aus Vasopressin-Rezeptor 2 und beta-Arrestin 1 – beide Proteine sollten in einer aktiven Konformation sein. Die experimentell bestimmte Rezeptor-Struktur ist blau, die Vorhersage von AlphaFold 3 ist orange. Beide Arrestin-Strukturen sind grau. (Struktur: PDB 7R0C, 10.1126/sciadv.abo7761)

Auch andere Prozesse können dafür sorgen, dass Proteine ihre Struktur verändern. Posttranslationale Modifikationen – das „Dekorieren“ mit bestimmten chemischen Gruppen, nachdem die Aminosäuresequenz fertig ist gehört dazu, oder auch der pH-Wert. In bestimmten Bereichen einer Zelle herrschen andere pH-Werte und beeinflussen das Verhalten von Proteinen. Das kann AlphaFold jedoch auch nicht in jede seiner Vorhersage mit einkalkulieren.

(Not So) Open Science

Eine andere Sache, die ich an AlphaFold bedenklich finde, hat nichts mit dem Programm an sich zu tun, sondern mit den Unternehmen, die dahinter stehen. Wie Retraction Watch berichtet, haben Google und dessen Tochterunternehmen Deep Mind den Code (und die Trainingsdaten) von AlphaFold 3 nicht öffentlich gemacht – nicht einmal den Reviewern des Papers, das über die neue AlphaFold-Version berichtet. Es gibt zwar den AlphaFold-Server, den man für Simulationen mit AlphaFold 3 nutzen kann, allerdings nur für eine begrenzte Zahl an  Aufträgen pro Tag und nicht für alle Vorhersagen, die es kann – oder können sollte.

Das macht es nicht nur unmöglich, die Angaben über die Leistungsfähigkeit des Programms genau zu überprüfen, sondern widerspricht auch den Grundsätzen guter Wissenschaft. Daten und Code sollten für die Wissenschafts-Community zugänglich sein, um die Forschung möglichst weit voran zu bringen und Ergebnisse überprüf- und replizierbar zu machen.

Fazit: Was kann AlphaFold?

Das Ganze liest sich jetzt möglicherweise, als wäre ich kein allzu großer Fan von KI-Werkzeugen zur Vorhersage von Proteinstrukturen. Aber dem ist eigentlich nicht so – man muss sie nur als das betrachten, was sie sind. Nämlich Werkzeuge, mit ihren eigenen Einsatzgebieten, Stärken, Schwächen und Limitationen.

Ich wollte mit diesem Text einen eher kritischen Blick auf AlphaFold und Co. werfen, vor allem nach der extrem lobenden Berichterstattung der letzten Tage. Denn so gut AlphaFold auch ist – und es ist sehr gut – wird es nicht die experimentelle Strukturbiologie überflüssig machen oder uns im Rekordtempo einen neuen Arzneistoff nach dem anderen entwickeln lassen. Tatsächlich funktionieren AlphaFold-Vorhersagen für die Entwicklung neuer Arzneistoffe schlechter als solche, die auf experimentellen Daten basieren.

Stattdessen muss es sinnvoll in Arbeitsabläufe eingebunden werden. Seine Geschwindigkeit und Einfachheit muss verwendet werden, wenn sich aufwändige Experimente nicht lohnen. Experimente hingegen sind immer noch nötig, um neue und unerwartete Dinge zu entdecken – und um Vorhersagen überprüfen zu können. Aber richtig angewendet sind AlphaFold und Co. auf jeden Fall Werkzeuge, die in den Werkzeugkasten der Wissenschaft gehören und die anderen Werkzeuge darin gut ergänzen können.

Wenn euch dieser Text gefallen hast, abonniert doch gerne meinen Newsletter, um keinen neuen Beitrag mehr zu verpassen!

Die verborgenen Botenstoffe des Gehirns: Neuropeptide

Meine Biomoleküle dieses Monats sind Botenstoffe des Gehirns, die zwar sehr unterschiedlich sein können, aber trotzdem alle einen großen Einfluss auf die Kommunikation zwischen Nervenzellen haben. Sie sind an den grundlegendsten Funktionen des Körpers beteiligt und Störungen in diesem System können mitunter zur Entstehung vieler Erkrankungen führen: die Neuropeptide.

Über einhundert Neuropeptide

Was Neuropeptide genau sind, ist aber gar nicht so einfach zu beantworten. Denn im Vergleich zu anderen Signalmolekülen im Gehirn gibt es von ihnen deutlich mehr und auch deutlich unterschiedlichere. Der – sehr passend benannte – Text What Are Neuropetides? beschreibt sie so: „Ein Neuropeptid ist ein kleiner, proteinartiger Stoff, der von Nervenzellen produziert und gesteuert freigesetzt wird, und auf neuronale Strukturen wirkt“.

In diesem Satz steckt eine ganze Menge drin, aber bevor wir ihn genauer unter die Lupe nehmen, schauen wir uns gemeinsam einige Beispiele für Neuropeptide an: Da wären zum Beispiel die endogenen Opioide, die unter anderem bei der Empfindung von Schmerzen oder Stress wichtig sind, das als „Kuschelhormon“ bekannte Oxytocin, Vasopressin, das den Wasserhaushalt des Körpers und damit auch den Blutdruck steuert, oder ACTH, das den Cortisol-Spiegel im Blut reguliert. Außerdem gibt es noch  über einhundert andere Neuropeptide, die alle unterschiedlichste Funktionen übernehmen. Um zu erfahren, was diese mehr als einhundert Stoffe mit ihren verschiedenen Funktionen gemeinsam haben, müssen wir uns der obenstehenden Definition widmen.

Neuropeptid oder Hormon – oder beides?

„Kleiner, proteinartiger Stoff“ ist relativ selbsterklärend. Neuropeptide sind – offensichtlicherweise – Peptide, bestehen also wie Proteine auch aus Aminosäuren. Und klein sind sie, weil sie nur aus wenigen Aminosäuren bestehen.

Sie stammen aus Nervenzellen und werden von ihnen erst auf ein bestimmtes Signal hin freigesetzt. Und wenn sie freigesetzt wurden, binden sie wieder an Rezeptoren in der Membran einer Nervenzelle und beeinflussen dort die Signalweiterleitung.

„Aber“, werden manche von euch jetzt sagen, „du hast gesagt, dass Oxytocin oder Vasopressin Neuropeptide sind. Sind das nicht eigentlich Hormone?“ Und damit hättet ihr zwar recht, ich hätte allerdings ebenso recht. Denn ein Stoff kann gleichzeitig ein Hormon und ein Neuropeptid sein: Hormone sind Substanzen, die von einem Organ freigesetzt werden, über den Blutkreislauf weitertransprotiert werden, und dann auf ein anderes Organ wirken. Damit können einige Neuropeptide ohne Probleme auch Hormone sein. Und nicht nur das: Manche Stoffe, die von Nervenzellen freigesetzt werden – und damit als Neuropeptide gelten – können auch von anderen Zellen abgegeben werden und sind in diesem Fall dann keine Neuropeptide, sondern „nur“ Peptidhormone. Etwas verwirrend, ich weiß, aber letztendlich bedeutet das nur, dass ein und der selbe Stoff gleichzeitig ein Neuropeptid und ein Hormon sein kann, oder er kann zwar beides sein, aber jeweils in anderen Kontexten.

Ob das jetzt so wichtig ist? Da bin ich mir nicht so sicher. Denn schließlich sind „Neuropeptid“ und „Hormon“ nur menschengemachte Kategorien, um die Realität zu beschreiben, und in welche Kategorie wir eine Substanz stecken, ändert ihre Realität nicht.

Neuropetide steuern Hunger und Sättigung

Aber um weniger endlich weniger theoretisch zu werden, und uns Neuropeptide „in Aktion“ anzuschauen, betrachten wir zwei Substanzen, die an der Entstehung von Adipositas beteiligt sein können: α-MSH und NPY.

Beide sind unter anderem an der Regulation von Hunger- und Sättigungsgefühlen beteiligt und sind daher im Fokus der Adipositas-Forschung. Auch wenn ich mich jetzt auch auf diese Aufgabe der beiden Neuropeptide konzentrieren werde, sind sie ebenfalls wichtig für viele weitere Körperfunktionen.

α-MSH entsteht aus dem Vorläuferpeptid POMC. Denn je nachdem, wie POMC gespalten wird, können verschiedene Neuropetide daraus entstehen. In manchen Nervenzellen werden daraus die Melanocortine α-MSH, β-MSH oder γ-MSH gebildet, in anderen wiederum endogene Opioide oder ACTH, das die Synthese von Cortisol steuert. So ein Vorläuferpeptid, aus dem verschiedene Produkte entstehen können, ist sehr typisch für die Neuropeptide.

Wenn α-MSH dann gebildet ist – normalerweise, wenn wir etwas gegessen haben – kann es Rezeptoren an der Oberfläche anderer Nervenzellen aktivieren und dort seinen Effekt vermitteln:  der Hunger lässt nach und ein Sättigungsgefühl stellt sich ein.

Bei Menschen, die z.B. an genetisch bedingtem POMC-Mangel leiden, funktioniert dieser Regulationsmechanismus nicht. Der Hunger lässt trotz Essens nicht nach, und die Patient:innen entwickeln schweres Übergewicht. Daher gibt es einen Arzneistoff, Setmelanotid, der genauso wie α-MSH die entsprechenden Rezeptoren aktivieren und die Sättigung auslösen kann.

Struktur von NPY (Bild: Nevit Dilmen, Struktur: PDB 1RON)

NPY hat die entgegengesetzte Rolle: Die Freisetzung von NPY induziert Hunger, und auch Mutationen im NPY-System sind mit der Entstehung von Adipositas assoziiert. NPY wird genauso wie α-MSH aus einem Vorläuferpeptid gebildet, dem Prepro-NPY. Hier können daraus allerdings nicht so viele weitere Stoffe entstehen wie aus POMC, sondern nur ein weiterer, das C-flanking peptide, über das es nur sehr wenig Literatur gibt.

Und natürlich, wie das in der Biologie meistens ist, hängen die Signalwege von α-MSH und NPY auch zusammen. Zum Beispiel kann das gleiche Signal, das die Freisetzung von α-MSH auslöst, die Ausschüttung von NPY hemmen.

Das nur als kleines Beispiel für die Bedeutung von Neuropeptiden bei der Steuerung von so grundlegenden Dingen wie Hunger und Sättigung. Aber auf ähnliche Weise sind noch dutzende andere Neuropeptide an genauso grundlegenden Prozessen beteiligt.

Wenn euch dieser Text über die Neuropeptide gefallen hat, dann abonniert doch gerne meinen Newsletter, um keinen neuen Blogpost mehr zu verpassen oder lest meinen Beitrag über die vorherigen Biomoleküle des Monats, die nicht codierenden RNAs.

Wieso Antibiotika-Resistenzen unvermeidbar sind – Antibiotika-Resistenzen, Teil 1

Eine der größten Revolutionen der Medizin war ohne Zweifel die Entdeckung der Antibiotika. Während davor mehr als die Hälfte aller Menschen an Infektionen starben, sind viele dieser damals lebensbedrohlichen Krankheiten heute relativ gut zu behandeln. Doch diese „Unschlagbarkeit“ gegenüber bakteriellen Infektionen wird von Antibiotika-Resistenzen bedroht. Die Entstehung von mehr und mehr Resistenzen ist unvermeidbar, und schon jetzt sind multiresistente Stämme ein großes Problem. Die Entwicklung neuer Antibiotika läuft hingegen nur schleppend. Wie also kann in Zukunft unsere Antwort auf Antibiotika-Resistenzen aussehen?

Das Wettrennen gegen Resistenzen

Der Kampf gegen resistente Bakterienstämme ist wie ein Wettrennen. Aber während die Entwicklung neuer Antibiotika durch wissenschaftliche und gesellschaftliche Gründe – die wir uns später noch genauer anschauen werden – gebremst wird, ist die Entstehung neuer Resistenzen unaufhaltsam.

Dass Bakterien resistent gegenüber bestimmten Wirkstoffen werden, ist die logische Konsequenz aus deren Einsatz. Denn wenn ein Antibiotikum erst einmal „draußen“ in der Welt ist, haben Bakterien, die weniger empfindlich darauf sind, einen evolutionären Vorteil. Sie erwerben Resistenzen gegen diesen Stoff durch Mutationen in ihrem Erbgut, was durch ihre extrem große Zahl und kurzen Generationszeiten viel schneller geht als zum Beispiel evolutionäre Prozesse bei Menschen ablaufen.

Elektronenmikroskopisches Bild von E. coli Bakterien (Bild: Janice Haney Carr)

Und hat ein Bakterium erst einmal eine Resistenz erworben, kann es sie durch einen sogenannten horizontalen Gentransfer auch an andere Bakterien weitergeben. Dabei wird genetisches Material, beispielsweise in Form von ringförmigen DNA-Stücken, den Plasmiden, von einer Zelle an eine andere übertragen. Dieses genetische Material codiert entsprechende Antibiotika-Resistenzen – aber nicht nur das: Denn oft befindet sich darauf nicht nur die Information für die Resistenz gegen einen Stoff, sondern gegen viele unterschiedliche. Und so kann es dann passieren, dass die Selektion durch die Anwendung eines Antibiotikums quasi nebenbei zum Erwerb vieler weiterer Resistenzen führt.

Wie sich Bakterien gegen Antibiotika wehren

Aber wie funktionieren Resistenzen überhaupt? Da gibt es verschiedene Mechanismen – oder Kombinationen von Mechanismen – die Bakterien resistent machen können. Erst einmal gibt es die intrinsischen Resistenzen, bei denen Bakterien aufgrund ihrer „normalen“ Eigenschaft nicht anfällig für einen Stoff sind. Bakterien können grob in zwei Kategorien eingeteilt werden: Gram-positiv und Gram-negativ. Sie unterscheiden sich durch den Aufbau ihrer Zellwand, was der Grund für viele intrinsische Resistenzen ist. Denn einige Stoffe, z.B. das Antibiotikum Vancomycin, können die Zellwand Gram-negativer Bakterien (genau genommen deren äußere Membran) einfach nicht überwinden.

Intrinsische Resistenzen sind aber nicht diejenigen, die uns Probleme bereiten. Das sind eher die erworbenen Resistenzen. Und während eine verminderte Aufnahme von Antibiotika – beispielsweise durch verringerte Bildung von Kanalproteinen oder vermehrte Bildung von Proteinen, die Antibiotika wieder aus der Zelle heraustransportieren – auch hier ein wichtiger Mechanismus ist, ist es bei Weitem nicht der einzige.

Am simpelsten sind wohl einfach Veränderungen in der Zielstruktur. Denn alle Antibiotika binden an irgendeine Struktur der Bakterien, hauptsächlich Enzyme, um dort ihre Wirkung zu vermitteln. Wenn diese Zielstruktur,  das sogenannte Target, durch eine Mutation verändert ist, können Antibiotika schlechter daran binden und werden weniger wirksam (z.B. indem sich durch eine andere Aminosäure im aktiven Zentrum eines Enzym die Bindestelle orthosterischer Hemmstoffe verändert).

Bakterien können sich aber auch direkt gegen Antibiotika wehren, indem sie sie chemisch verändern. Dazu können sie entweder Bindungen spalten – meistens durch Hydrolyse von Estern oder Amiden – oder neue chemische Gruppen an die Antibiotika anhängen. So der so, am Ende führt das dazu, dass die veränderten Stoffe nicht mehr an ihr Target binden können.  Die Aufgabe, Antibiotika chemisch zu verändern, übernehmen Enzyme. Und das bekannteste Beispiel hier sind wohl die β-Lactamasen.

β-Lactamasen spalten Penicilline und machen sie damit unwirksam

β-Lactamasen gehören zu den Penicillin-bindenden Proteinen. Aber außer Penicilline (und generell β-Lactam-Antibiotika) zu binden, können sie diese leider auch abbauen und damit wirkungslos machen. Einige Bakterien besitzen natürlicherweise β-Lactamasen, aber auch viele Stämme, die vorher Penicillin-sensibel waren, werden durch die Bildung von β-Lactamasen resistent. Als Gegenmaßnahme wurden die β-Lactamase-Hemmer entwickelt, also Arzneistoffe, die nur dazu da sind, die abbauenden Enzyme zu hemmen. Sie werden zusammen mit einem Antibiotikum gegeben, um es vor dem Abbau zu schützen. Allerdings gibt es sehr viele unterschiedliche β-Lactamasen, gegen die einzelne Stoffe alleine nicht alle wirken können, und auch die abbauenden Enzyme verändern sich immer weiter – so entstanden zum Beispiel die extended spectrum β-Lactamasen, die noch mehr unterschiedliche Antibiotika abbauen können.

Das größte Problem: Der falsche Umgang

Welcher Mechanismus auch immer für die Resistenz verantwortlich ist, er ist genetisch codiert und kann damit sowohl evolutionär entstehen als auch zwischen Bakterien übertragen werden. Und hier müssen wir uns als Menschheit selbst an die Nase fassen: Denn wir schaffen die perfekten Bedingungen dafür. Die Entstehung von Resistenzen ist nämlich an Orten am einfachsten, an denen viele und viele unterschiedliche Bakterien einer großen Zahl an Antibiotika ausgesetzt sind. Dazu gehören natürlich Krankenhäuser, in denen viele verschiedene Patient:innen mit diversen Infekten behandelt werden müssen. Aber nicht allein die Kliniken sind das Problem. Das Abwasser ist oft mit den unterschiedlichsten (antibakteriellen) Arzneistoffen kontaminiert, sodass auch dort ideale Bedingungen für Entstehung resistenter Stämme herrschen.

Generell ist der größte Faktor, der zur Verbreitung von Antibiotika-Resistenzen beiträgt, der fehlerhafte Umgang mit Antibiotika. Das reicht von unnötig oder falsch verschriebenen Antibiotika durch Ärzt:innen über unzureichende Vorschriften und mangelhafte Aufklärung von Patient:innen bis hin zum übertriebenen Einsatz von Antibiotika in der Tierhaltung und der Kontamination von Wasser und Umwelt.

Daher sind Maßnahmen, unseren Umgang mit antibiotischen Arzneimitteln zu verbessern, eine wichtiges Werkzeug im Wettrennen gegen die Resistenzen. Ein Beispiel sind die Antibiotic Stewardship Programme, die auf mehreren Ebenen und interdisziplinär einen verantwortungsvollen Umgang fördern wollen.

Aber eine Sache muss trotzdem klar gesagt werden: Solange wir Antibiotika verwenden, ist die Resistenz dagegen ein Selektionsvorteil für Bakterien. Das bedeutet, dass Antibiotika-Resistenzen quasi unvermeidbar sind. Und das heißt auch, dass wir neue antibakterielle Wirkstoffe brauchen werden, um Infektionen mit diesen resistenten Bakterien zu behandeln. Wieso das aber gar nicht so einfach ist, und was wir tun können, um dieses Wettrennen doch zu gewinnen, erfahrt im zweiten Teil dieses Textes, den ihr hier findet.

Und wenn euch dieser Beitrag gefallen hat, dann abonniert doch gerne meinen Newsletter, um keinen neuen Blogpost mehr zu verpassen.

Biomolekül des Monats: nicht-codierende RNA

Spätestens seit Aufkommen der mRNA-Impfstoffe haben viele zumindest eine grobe Ahnung, was RNA ist. Aber es gibt nicht nur die mRNA, denn eigentlich ist die mRNA – wenn auch die prominenteste der RNA-Arten – deutlich in der Minderheit. Tatsächlich sind 98% aller RNA von Eukaryoten (das heißt Lebewesen mit Zellkern) sogenannte nicht-codierende RNA. Daher sind die nicht-codierenden RNAs meine Biomoleküle des Monats, und in diesem Text werden wir uns diese zu wenig beachteten 98% der RNA etwas genauer anschauen.

mRNA und Translation

Aber beginnen wir doch trotzdem kurz mit der mRNA. Das „m“ steht hier für messenger und genau das ist die mRNA. Sie transportiert die Information über den Aufbau von Proteinen, die auf der DNA gespeichert ist, zu den Ribosomen. Die wiederum übersetzen diese Information dann in einem Translation genannten Prozess in ein Protein. Daher ist die mRNA auch codierende RNA – sie codiert Informationen für den Aufbau von Proteinen.

Für die Translation werden klassischerweise noch zwei anderen Typen von RNA gebraucht: die ribosomale rRNA und die transfer- tRNA. Das sind schon die ersten beiden nicht-codierenden RNAs, denn sie tragen keine Information über die Aminosäuresequenz eines Proteins. Stattdessen ist die rRNA Bestandteil der Ribosomen und die tRNA transportiert die Aminosäuren zum Ribosom und macht die eigentliche „Übersetzungsarbeit“ von mRNA zu Protein.

Dreidimensionale Struktur einer tRNA . Ganz unten, an der “Spitze” befindet sich das Anticodon, das an die mRNA bindet und eine bestimmte Abfolge von drei Basen erkennt (S. cerevisiae Phe-tRNA, PDB 1EHZ)

“Die RNA ist keine Wäscheleine”

Bevor wir uns die anderen nicht-codierenden RNAs anschauen, müssen wir kurz klären, was RNA eigentlich ist: RNA ist eine Nukleinsäure – die Abkürzung RNA steht für ribonucleic acid – und besteht wie die DNA aus einem Zucker-Phosphat-Rückgrat und einer Abfolge von Basen, die bei der mRNA die Information codiert.

Der Unterschied zur DNA besteht in dem Zucker – Ribose statt 2‘-Desoxyribose – und in einer Base – Uracil statt Thymin. Einige Arten von RNA beinhalten aber tatsächlich noch andere, seltenere Basen. Außerdem ist RNA keine Doppelhelix sondern liegt typischerweise einzelsträngig vor. Aber, wie mein Biolehrer in der Schule immer sagte, „die RNA ist keine Wäscheleine“. Stattdessen bildet auch sie lokale Strukturen und Basenpaarungen mit komplementären Basen (U und A sowie C und G) des gleichen oder eines anderen RNA-Strangs.

Aufbau der RNA aus Zucker-Phosphat-Rückgrat und Basen

Und RNAs, die an komplementäre RNA-Stränge binden können, sind weitere wichtige nicht-codierende RNAs.

Interferenz – Kontrolle der Genexpression

Sowohl miRNAs (mi für micro) als auch siRNAs (si für small interfering) machen sich die Bindung an komplementäre mRNA zunutze, um die Genexpression – also die tatsächliche Umsetzung der genetischen Information in ein Protein – zu regulieren.

miRNAs sind genetisch codiert und nach einem relativ komplizierten Herstellungsprozess entsteht ein doppelsträngiges Stück RNA, die reife miRNA. Zusammen mit einigen Protein kann einer dieser RNA-Stränge einen miRISC genannten Komplex bilden. Die miRNA in miRISC kann jetzt an eine komplementäre Stelle in einem mRNA-Strang binden. Typischerweise findet diese Bindung in einem Teil der mRNA statt, die 3‘-untranslatierte Region genannt wird und keine Information über den Aufbau eines Proteins trägt. Die Bindung von miRNA und RISC führt dann dazu, dass der mRNA-Strang abgebaut wird, und das darauf codierte Protein wird nicht hergestellt. Das geschieht, indem die schützenden Enden der mRNA – 3‘-poly-A-Ende und 5‘-cap – entfernt werden. Ohne diesen Schutz ist mRNA in einer Zelle extrem instabil und wird sehr schnell zerstört.

RISC aus einem Protein (blau) und miRNA gebunden and eine mRNA (beides rot) (PDB 6N4O)

Da die Biologie in den allermeisten Fällen effizient ist und Mechanismen für unterschiedliche Dinge verwendet – was für uns dann oft chaotisch erscheint – ist das nicht die einzige Funktion der miRNA: Sie kann auch die Translation gebundener mRNA hemmen, oder sogar die Genexpression direkt an der DNA im Zellkern beeinflussen.

Ganz ähnlich funktioniert die siRNA. Ihre Biosynthese ist zwar etwas anders, aber auch sie bildet RISCs, die bestimmte mRNA-Stränge erkennen und diese zerstören oder anderweitig ihre Translation verhindern. Durch die komplementäre Basenpaarung der mi- oder siRNA mit ihrer Ziel-mRNA ist dieser Regulationsmechanismus sehr spezifisch.

Diese Spezifität kann man auch für die Arzneitherapie nutzen. Es ist möglich, ganz gezielt Gene, die in eine Erkrankung involviert sind, abzuschalten. Givosiran beispielsweise ist ein siRNA-basierter Arzneistoff, der zur Behandlung der akuten intermittierenden Porphyrie verwendet wird – über Porphyrien habe ich in meinem Text über Häm ein wenig geschrieben. Das gleiche Prinzip wird häufig in der Molekularbiologie verwendet: Durch das Abschalten eines bestimmten Genes kann z.B. dessen Rolle in einem biologischen Prozess untersucht werden.

Ribozyme

Obwohl das noch lange nicht alle nicht-codierenden RNAs waren, möchte ich zum Abschluss nur noch eine davon erwähnen: die Ribozyme. Ribozyme sind RNA-Moleküle, die chemische Reaktionen katalysieren können, ganz genauso wie die bekannteren und häufigeren Enzyme. Ein Beispiel habe ich weiter oben sogar schon einmal erwähnt. Denn manche rRNAs, aus der Ribosomen aufgebaut sind, besitzen katalytische Aktivität und fügen die Aminosäuren eines gerade entstehenden Proteins zusammen.

Ribozyme sind außerdem eine wichtige Stütze der RNA-Welt-Hypothese. Sie besagt, dass die frühesten Lebewesen auf RNA sowohl als Informationsspeicher als auch zur Katalyse von Reaktionen basierten. Diese Aufgaben werden in allen modernen Lebensformen vorranging von DNA bzw.  Proteinen übernommen, womit die Ribozyme eine Art „Überbleibsel“ der RNA-Welt sein könnten. (Eine sehr anschauliche, aber nicht wirklich zutreffende Beschreibung von Ribozymen wären Fossilien aus der RNA-Welt.)

Das war jetzt also ein kurzer Rundumschlag zu den 98% der RNA, die keine mRNA sind. Es gäbe – wie bei fast jedem Thema – noch so viel mehr zu sagen, aber das muss dann wohl bis zu einem anderen Blogpost warten. Und falls ihr keine neuen Beiträge mehr verpassen wollt, dann abonniert doch gerne meinen Email-Newsletter.

CRISPR-basierte Therapien, Teil 2: Ihre Probleme und ihr Potential

Im ersten Teil dieses Textes habe ich euch Exa-cel, die erste CRISPR-basierte Gentherapie vorgestellt. Wie wir gesehen haben, ist das CRISPR/Cas9-System extrem gut dazu geeignet, DNA an einer ganz spezifischen Stelle zu editieren. So können dann – wie z.B. bei Exa-cel – bestimmte Gene ausgeschaltet werden.

Das funktioniert, indem eine guide RNA an eine komplementäre DNA-Sequenz bindet und das Cas9-Protein die DNA an dieser Stelle schneidet. Dieser DNA-Doppelstrangbruch führt dazu, dass zufällige Nukleotide (die einzelnen Bausteine der DNA) entfernt oder eingefügt werden. Durch diesen non-homologous end joining genannten Prozess verliert das geschnittene Gen seine Funktion. Mithilfe eines anderen Prozesses können sogar neue Gene an der geschnittenen Stelle eingefügt werden. Was jedoch auch immer das Ziel ist, CRISPR/Cas9 ist ein sehr exaktes und wirkungsvolles Werkzeug.

Cas9 schneidet DNA dort, wo die guide RNA bindet. (Bild: marius walter, CC BY-SA 4.0)

Aber wenn das CRISPR/Cas9-System ein so tolles Werkzeug ist, warum behandeln wir dann noch nicht alle möglichen Krankheiten damit? Das Potential wäre auf jeden Fall da. Diverse Erbkrankheiten könnten „einfach“ korrigiert werden. Schlimme Autoimmunerkrankungen könnten behandelt werden. Die Krebstherapie könnte enorme Fortschritte machen (beispielsweise könnten mit CRISPR heterologe CAR-T-Zellen hergestellt werden – was das ist findet ihr in meinem Text über die CAR-T-Zelltherapie). Oder Patient:innen mit Diabetes mellitus, gerade vom Typ 1, wären nicht mehr von einer lebenslangen Medikation abhängig.

Nun ja, ein Grund ist, dass wir das Potential des CRISPR/Cas9-Systems noch nicht so lange kennen und solche Dinge eben Zeit brauchen. Aber ein anderer gewichtiger Grund ist, dass noch einige Hürden überwunden werden müssen, bis aus CRISPR eine massentaugliche Therapieoption wird.

Schutzmechanismen und off target-Effekte

Ein – aus biologischer Sicht sehr spannendes – Problem ist, dass die Anwendung von CRISPR/Cas9 die Entstehung von Krebszellen fördern könnte. Laut eines Papers von 2018 lösen die Doppelstrangbrüche, die dabei entstehen, einen eingebauten Schutzmechanismus in Zellen aus: Den Zellzyklusarrest durch das Tumorsuppressorprotein p53. Das bedeutet einfach nur, dass die Zelle sich zum Schutz vor der Verbreitung von DNA-Schäden nicht weiter teilt (über den Tumorsuppressor p53 gibt es auch einen Blogbeitrag von mir, falls ihr gerne mehr darüber wissen wollt). Das führt dann aber dazu, dass bei der Anwendung von CRISPR Zellen selektiert werden, deren Schutzmechanismus defekt ist, da diese sich ja weiter teilen können. Solche Zellen sind dann deutlich anfälliger dafür, zu Krebszellen zu werden, da sich in ihnen einfacher Mutationen akkumulieren können.

CRISPR/Cas9-editierte Zellen könnten also ein größeres Risiko zur Entstehung von Tumoren bergen. Soweit ich weiß, gibt es dazu aber keine klinischen Daten. Gerade bei einer so neuartigen Therapie sollte das allerdings genau im Auge behalten werden. Denn für innovative Therapien, die seltene Krankheiten als Ziel haben oder deutlich besser zu sein versprechen als die bisherige Behandlung, gibt es beschleunigte Zulassungsverfahren – und das auch zurecht. Aber gerade langfristige Folgen wie Krebs könnten dabei erstmal unentdeckt bleiben.

Dann gibt es noch etwas, das off target-Effekte genannt wird. So nennt man es, wenn die guide RNA an andere Stellen der DNA bindet als beabsichtigt, die dann ebenfalls geschnitten werden. Dabei können dann möglicherweise wichtige Gene zerstört werden. Glücklicherweise ist es möglich, solche off target-Effekte mit computerbasierten oder experimentellen Methoden vorherzusagen – was dann für jeden neuen Therapieansatz nötig ist und z.B. auch bei Exa-Cel gemacht wurde.

Aber auch wenn die gewünschte Stelle der DNA geschnitten wird, können Probleme auftreten. Ein Paper ebenfalls von 2018 zeigt, dass es nicht nur zu kleinen indel-Mutationen kommen kann, sondern auch zu sehr großen Veränderung der DNA. Mehrere Kilobasen lange Stücke (das ist ziemlich lang) können deletiert werden, oder das Erbgut wird an dieser Stelle ganz umstrukturiert. Das kann dann wiederum auch andere Gene als nur das Ziel-Gen betreffen, obwohl die guide RNA an die richtige Stelle gebunden hat.

Vektoren und Immunantwort

Letztlich ist bei jeder CRISPR-basierten Therapie auch die Frage, ob sie in vivo oder ex vivo stattfindet, also innerhalb oder außerhalb der Patient:innen. Exa-Cel ist eine ex vivo-Therapie: Stammzellen werden den Patient:innen entnommen, genetisch verändert, und dann wieder eingesetzt. So ein Verfahren ist extrem aufwändig und teuer, und es geht auch mit Nachteilen für die Patient:innen einher. Beispielsweise müssen vor der Infusion von Exa-Cel alle vorhandenen Stammzellen des Knochenmarks mit Zytostatika zerstört werden, damit sich die editierten Stammzellen etablieren können.

Eine der größten Herausforderungen für die in vivo-Anwendung dagegen ist es, den richtigen Vektor zu finden. Denn irgendwie muss das CRISPR/Cas9-System seinen Weg in die richtigen Zellen finden. Dazu gibt es verschiedene Methoden, die jeweils ihre eigenen Vor- und Nachteile haben. Zur Wahl stehen u.a. virale Vektoren wie Lenti- oder Adeno-assoziierte Viren, Liposomen oder Nanopartikel.

Adeno-assoziiertes Virus. (PDB 7WJW)

Schnitt durch ein Liposom,

Alle Überlegungen auszuführen, die in der Wahl oder Entwicklung des passenden Vektors stecken, würde vermutlich einen eigenen Text benötigen. Aber ein wichtiger Punkt dabei ist die Immunreaktion, die der Vektor auslöst. Gerade virale Vektoren bergen das Potential, vom Immunsystem erkannt und bekämpft zu werden.

Aber tatsächlich ist das nicht nur ein Problem der Vektoren. Das Cas9-Protein selbst ist immunogen, und die Mehrzahl der Menschen besitzen Antikörper und T-Zellen, die gegen die gebräuchlichsten Cas9-Proteine gerichtet sind (beschrieben in diesem Paper). Da besteht dann natürlich die Gefahr, dass die Immunreaktion – auf Vektor oder Cas9 – die Therapie neutralisiert und zusätzlich Nebenwirkungen auslöst.

Das Potential der CRISPR-basierten Therapien

Ihr seht also, dass CRISPR keine Wunderwaffe ist, die alle Krankheiten heilen kann. Aber die Zulassung von Exa-Cel zeigt immerhin, dass CRISPR-basierte Therapien das Potential besitzen, welches wir – oder zumindest die Seriöseren unter uns – uns von ihnen erhofft hatten. Sie können eine ursächliche Behandlung für Krankheiten bieten, für die das ansonsten nur schwer oder gar nicht möglich wäre, und das ist eine extrem vielversprechende Aussicht.

Wir werden auf jeden Fall noch weitere CRISPR-basierte Therapien in die Klinik kommen sehen. Erstmal werden das aber teure und aufwändige Therapien bleiben, die eher selten angewendet werden. Bis CRISPR-basierte Therapien massentauglich sind, müssen noch einige Probleme gelöst werden. Wann und ob überhaupt das möglich ist, wird dann wohl die Zeit zeigen müssen.

Falls euch dieser Blogpost gefallen habt, abonniert doch gerne meinen Email-Newsletter, um keinen neuen Beitrag mehr zu verpassen. Oder lest doch den ersten Teil dieses Textes, falls ihr das noch nicht getan habt.

CRISPR-basierte Therapien, Teil 1: Exa-cel

Vor kurzem wurde in den USA und Großbritannien die erste auf CRISPR basierende Gentherapie überhaupt zugelassen. Seit seiner Entdeckung hat das CRISPR/Cas9-System der Biomedizin viele neue Möglichkeiten verschafft. So ist es schon lange ein selbstverständlicher Teil der Grundlagenforschung und hat seinen Entdeckerinnen einen mehr als verdienten Nobelpreis eingebracht. Und fast ebenso lange wird über das Potential für die Behandlung von Krankheiten gesprochen, das CRISPR besitzt.

Jetzt, da die erste auf CRISPR basierende Therapie – die übrigens den Namen Exa-cel trägt – zugelassen ist, möchte ich in diesem zweiteiligen Blogbeitrag einen genaueren Blick auf die therapeutische Anwendung von CRISPR werfen. Natürlich wird es um Exa-cel gehen, aber da darüber in den letzten Wochen schon sehr viel geschrieben wurde, werden wir uns vor allem die Chancen, Schwierigkeiten und Risiken anschauen, die CRISPR-basierte Therapien generell bereithalten.

Sichelzellanämie und β-Thalassämie

Exa-xel ist eine CRISPR-basierte Gentherapie für die beiden Erbkrankheiten Sichelzellanämie und β-Thalassämie. Bei beiden Krankheiten werden von Mutationen in dem Protein Hämoglobin verursacht, das für den Sauerstofftransport in Blut verantwortlich ist. (Etwas mehr über Hämoglobin erfahrt ihr in meinem Text über Häm).

Hämoglobin besteht aus vier Proteinketten, die sich zu einem großen Protein zusammenlagern. Zwei dieser Ketten werden α-Ketten genannt, und die anderen beiden β-Ketten. Mutationen in den β-Ketten führen dazu, dass bei der β-Thalassämie die Bildung neuer Erythrozyten – die roten Blutkörperchen, die Hämoglobin beherbergen und Sauerstoff transportieren – gestört ist. Die fehlerhaften β-Ketten bei der Sichelzellanämie verursachen eine Verformung der Erythrozyten. Sie werden weniger flexibel, verklumpen und können Blutgefäße verstopfen. Dadurch entstehen starke Schmerzen, eine Vielzahl von Organen wird geschädigt und die Patient:innen haben eine reduzierte Lebenserwartung. Zusätzlich werden Erythrozyten dauerhaft zerstört, sodass die Patient:innen unter einer chronischen Anämie – „Blutarmut“ – leiden.

Struktur von humanem Deoxy-Hämoglobin aus zwei alpha-Ketten (grün und orange) und zwei beta-Ketten (pink und violett). (PDB 1A3N)

Beide Erkrankungen werden bisher hauptsächlich mit einer Kombination aus Bluttransfusionen und medikamentöser Therapie behandelt. Keine der bisherigen Therapieoptionen kann tatsächlich die Ursache, die Bildung des mutierten Hämoglobins, bekämpfen.

Exagamglogen autotemcel, wie der der übertrieben umständliche, vollständige Name von Exa-cel lautet, ist die erste Möglichkeit, diese Krankheiten auch (auf eine gewisse Art) ursächlich zu bekämpfen.

Exa-cel

Die Therapie bedient sich dabei quasi eines Tricks. Denn Menschen besitzen nicht nur eine Form von Hämoglobin, sondern zwei. Ungeborene Kinder bilden ein anderes, das fetale Hämoglobin, das statt aus zwei α- und β-Ketten aus zwei α- und γ-Ketten besteht. In den ersten Lebensmonaten wird die Synthese des fetalen Hämoglobins allerdings ab- und die des „normalen“ Hämoglobins angeschaltet.

Weil das fetale Hämoglobin nicht aus β-Ketten besteht, funktioniert es auch ohne Probleme, wenn die schädlichen Mutationen im Gen für die β-Ketten vorliegen. Daher beginnen die Symptome bei Babys mit β-Thalassämie bzw. Sichelzellanämie erst nach einiger Zeit, nämlich wenn sie kein fetales Hämoglobin mehr bilden.

Die Idee hinter Exa-cel ist, die Synthese des fetalen Hämoglobins, das unabhängig von den Mutationen der β-Kette funktioniert, wieder zu aktivieren. Dazu werden den Patient:innen hämatopoetische Stammzellen entnommen, aus denen sich unter anderem die Erythrozyten entwickeln. Die Stammzellen werden mittels CRISPR/Cas9 – dazu gleich mehr – genetisch modifiziert.

Und zwar wird die Synthese des fetalen Hämoglobins normalerweise von dem Transkriptionsfaktor BCL11A – einem DNA-bindenden Protein – unterdrückt. Die Bildung dieses unterdrückenden Transkriptionsfaktors ist abhängig von einem DNA-Abschnitt, der als Enhancer bezeichnet wird. Enhancer sind Abschnitte im Genom von Eukaryoten, die häufig nötig sind, damit ein bestimmtes Gen exprimiert werden kann. Und dieser BCL11A-spezfische Enhancer ist nötig, damit der Transkriptionsfaktor, der die Synthese des fetalen Hämoglobins unterdrückt, gebildet werden kann. In den Enhancer wird jetzt eine Mutation eingeführt, die dafür sorgt, dass er nicht mehr funktioniert. Das wiederum bedeutet, dass es keinen unterdrückenden Transkriptionsfaktor BCL11A mehr gibt, und das heißt dann, dass der Bildung von fetalem Hämoglobin nichts mehr im Weg steht. (Diese Strategie wurde übrigens in diesem Paper von 2015 erstmals beschrieben.)

Die modifizierten Stammzellen werden den Patient:innen wieder zugeführt. Dort differenzieren sie sich (unter anderem) zu Erythrozyten, die jetzt dauerhaft funktionierendes fetales Hämoglobin besitzen.

Übersicht über das Hämoglobin der beiden Patient:innen in der ersten klinischen Studie zu Exa-cel. Nach Infusion von Exa-cel (CTX001) steigt der Anteil an fetalem Hämoglobin (blau) deutlich. (Quelle: Frangoul et al. 2021, DOI 10.1056/NEJMoa2031054)

2020 wurden erste Ergebnisse einer klinischen Studie an zwei Patientinnen veröffentlicht, und 2022 wurden weitere Studienergebnisse an 75 Patient:innen bei einem Kongress vorgestellt. Die Therapie weist zwar auch einige schwerwiegende Nebenwirkungen auf, führt aber zu einer deutlichen Verbesserung der Symptome, macht Bluttransfusionen überflüssig und ist – über den Untersuchungszeitraum – dauerhaft anhaltend.

Dieses Jahr wurde dann bekannt, dass Exa-cel als Therapie für Sichelzellanämie und β-Thalassämie sowohl in Großbritannien als auch den USA zugelassen wird.

CRISPR/Cas9

„Die Stammzellen werden mittels CRISPR/Cas9 genetisch modifiziert“, habe ich oben geschrieben. Das ist ja schön und gut, und davon haben wir ja wahrscheinlich alle schonmal gehört. Aber wie genau funktioniert das?

Das CRISPR/Cas9-System stammt ursprünglich aus Bakterien und Archaeen. Dort fungiert es als eine Art Immunsystem gegen den Angriff von Phagen – Viren, die Bakterien und Archaeen befallen. Denn was tun diese Phagen? Sie schleusen ihr eigenes Erbgut in die Bakterien und Archaeen ein. Daher brauchen diese eine Möglichkeit, fremde DNA zu zerstören: CRISPR/Cas9 (und viele weitere).

Das CRISPR/Cas9-System besteht aus drei Teilen: Ein RNA-Strang, der eine bestimmte DNA-Sequenz binden kann: die crRNA. Ein RNA-Strang, der an die crRNA bindet und eine bestimmte dreidimensionale Struktur, eine Haarnadelschleife formt: die tracrRNA. Und ein Enzym, das den Komplex aus crRNA und tracrRNA bindet: Cas9. Cas9 ist eine Endonuklease, also ein Enzym, das DNA-Stränge durchtrennen kann. Zusammen bindet dieser Komplex an eine bestimmte DNA-Sequenz und schneidet die DNA dort.

Doppelstrangbruch durch Cas9 in einer Zielsequenz, an die guide RNA / crRNA gebunden hat. (Bild: marius walter, CC BY-SA 4.0)

Das CRISPR/Cas9-System ist so extrem nützlich, weil man die DNA-bindende Sequenz der crRNA quasi beliebig ändern kann. Dadurch kann ein DNA-Strang an einer gewünschten Stelle gezielt geschnitten werden.

Wie immer gilt auch hier der der Disclaimer: in Realität ist das Ganze ein wenig komplizierter. Zum Beispiel gibt es verschiedene Cas-Proteine mit unterschiedlichen Eigenschaften, die zu schneidende DNA muss bestimmte Motive beinhalten und praktisch wird auch oft eine fusionierte Variante aus crRNA und tracrRNA, die single guide oder sgRNA, verwendet.

Wenn der DNA-Strang dann jedenfalls geschnitten ist, wird er auch wieder repariert. Bei dieser Reparatur wird der DNA-Strang aber oft nicht wieder korrekt zusammengefügt. Stattdessen werden in einem Prozess, der non-homologous end joining heißt, einige Nukleotide – die Bausteine der DNA – entfernt oder eingefügt. Solche indel-Mutationen (insertion und deletion) machen den geschnittenen DNA-Abschnitt oft funktionsunfähig, und tadaa, schon haben wir einen DNA-Abschnitt abgeschaltet.

Es ist auch außerdem möglich, mit dem CRISPR/Cas9-System gezielt DNA-Abschnitte an der Schnittstelle einzufügen, doch das ist nochmal eine etwas andere Geschichte.

Wo ist dabei der Haken?

Wenn das CRISPR/Cas9-System ein so tolles Werkzeug ist, warum behandeln wir dann noch nicht alle möglichen Krankheiten damit?

Darum wird es in Teil zwei dieses Textes gehen, der demnächst erscheinen wird. Darin werden wir uns dann anschauen, welche Probleme noch überwunden werden müssen, um CRISPR wirklich als effektive und massentaugliche Therapie nutzen zu können.

Wenn ihr das nicht verpassen wollt, dann abonniert doch am besten meinen Newsletter, dann werdet ihr direkt über neue Blogbeiträge informiert.

Biomolekül des Monats: Häm

Diesen Monat wird es blutig, denn mein Biomolekül ist eines der wichtigsten Moleküle unseres Blutes. Mir ist bewusst, dass es für diesen Titel unglaublich viele Kandidaten gibt. Aber die wohl bekannteste Funktion des Bluts ist es, Sauerstoff zu transportieren; und dafür wird ein Molekül ganz besonders benötigt: Häm.

Und auch wenn Häm allein deshalb schon wortwörtlich lebenswichtig ist, möchte ich euch hier nicht nur zeigen, wie Häm überhaupt Sauerstoff transportieren kann. Ich möchte euch stattdessen auch die anderen wichtigen Funktionen von Häm vorstellen, sowie die Krankheiten, die entstehen, wenn die Biochemie des Häm gestört ist.

Die Basics

Über Häm und die Stoffklasse zu der es gehört – die Porphyrine – gibt es eine Menge zu sagen, und unglücklicherweise ist hier nicht der Ort, um das alles auszuführen. Aber um ein paar der Basics werden wir uns auf jeden Fall kümmern:

Häm ist ein organisches Molekül, das mit vier Stickstoffatomen ein Eisenion in seiner Mitte koordiniert. Mit diesem Eisenion kann es ein Sauerstoff-Molekül binden, und das ist es, was Häm für uns so wichtig macht. Sauerstoff, wenn er von unserem Blut zu allen möglichen Geweben im Körper transportiert wird, liegt an Häm gebunden vor. Das ist die bekannteste und eine wirkliche wichtige Funktion von Häm, aber lange nicht die einzige. Dazu jedoch später mehr.

Struktur von Häm b, der häufigsten Form von Häm beim Menschen

Das Eisen kann in zwei unterschiedlichen Oxidationsstufen vorliegen: Eisen(II) und Eisen(III). Eisen(II) hat nur ein Elektron mehr als Eisen(III), trotzdem ist nur diese Form in der Lage, Sauerstoff zu binden. Ab und zu wird das Eisen(II) im Häm natürlicherweise zu Eisen(III) oxidiert, aber das ist kein Problem. Denn es gibt ein spezielles Enzym (die Methämoglobin-Reduktase), dessen Aufgabe es ist, das Eisen(III) in Hämoglobin (siehe unten) wieder zum Eisen(II) zu umzusetzen. Es gibt aber auch einige Gifte – wie beispielsweise Nitrite – die das Häm-Eisen oxidieren können, wogegen die Methämoglobin-Reduktase dann nicht mehr ankommt.

Häm in Hämoglobin und darüber hinaus

Eine sehr wichtige Sache habe ich aber bis jetzt verschwiegen. Denn das Häm kann seine Aufgaben nicht allein erfüllen. Es ist eine sogenannte prosthetische Gruppe – ein Molekül, das mit einem Protein verbunden ist, aber nicht selbst aus Aminosäuren besteht. Daher braucht das Häm ein Protein, um zu funktionieren, um im Gegenzug braucht das entsprechende Protein das Häm.

Und noch etwas habe ich bisher verschwiegen: Es gibt auch verschiedene Arten von Häm. Wenn wir also wissen wollen, welche Aufgaben Häm im menschlichen Körper hat, müssen wir uns anschauen, welche Arten von Häm in welchen Proteinen vorkommen.

Fangen wir wieder mit dem Klassiker an: Häm b (auch Fe-Protoporphyrin IX genannt) und Hämoglobin. Hämoglobin ist das Protein, das in Erythrozyten – den roten Blutzellen – vorkommt und für den Sauerstofftransport verantwortlich ist (und zusätzlich dem Blut die rote Farbe verleiht). Es besitzt vier Häm-Gruppen und eine ganz interessante Eigenheit, den kooperativen Effekt. Die vier Häm-Gruppen binden Sauerstoff nicht unabhängig voneinander. Stattdessen wird, wenn eine der Häm-Gruppen ein Sauerstoff-Molekül gebunden hat, die Bindung von Sauerstoff an die anderen Häm-Gruppen stark begünstigt. Und umgekehrt werden, wenn das mit Sauerstoff beladene Hämoglobin ein Sauerstoff-Molekül abgibt, auch die anderen drei Sauerstoff-Moleküle leichter abgegeben. Das ist nötig, damit das Hämoglobin in der Lunge zwar vollständig mit Sauerstoff beladen werden, es diesen Sauerstoff in den anderen Geweben dann aber auch effektiv wieder abgeben kann.

Die Bewegung von Hämoglobin, wenn Sauerstoff (hellblau) an die Hämgruppe (rot) des Hämoglobins bindet, ermöglicht des kooperativen Effekt (Bild: Shuchismita Dutta, David Goodsell, DOI 10.2210/rcsb_pdb/mom_2003_5)

Häm b kommt außerdem noch in Myoglobin vor. Myoglobin besitzt eine Häm-Gruppe und ist ebenfalls für den Sauerstofftransport zuständig. Allerdings nicht im Blut, sondern innerhalb von Muskeln.

Auch eine ganze Menge von Enzymen brauchen Häm b, um ihre Aufgaben zu erfüllen. Dazu gehören beispielsweise Enzyme aus dem Energiestoffwechsel, mit denen wir aus Nährstoffen Energie gewinnen können. Außerdem ist eine extrem große Enzym-Familie – die CYP-Enzyme – Häm-abhängig. Sie verstoffwechseln sowohl körpereigene als auch Fremdstoffe und sind außerdem an der Herstellung wichtiger Botenstoffe wie der Steroidhormone beteiligt. An dieser Stelle muss ich eine weitere Vereinfachung gestehen, die ich weiter oben getroffen habe. Denn im Zuge des (sehr spannenden) Mechanismus von CYP-Enzymen liegt das Eisen nicht nur in den Oxidationsstufen II und III vor, sondern auch in den Stufen IV und V.

Kristallstruktur von CYP3A4 mit Häm-Gruppe (PDB: 4I3Q, 2013)

Außer Häm b gibt es außerdem noch Häm a und Häm c (und einige weitere). Häm a und Häm c sind beides Teil von Enzymen der Atmungskette, also ebenfalls wichtig für die Energiegewinnung.

fMRI dank Häm

Das Häm-Eisen besitzt außerdem eine chemische Eigenschaft, die uns die effektive Untersuchen von Hirnfunktionen ermöglicht. Um das zu verstehen, müssen wir uns erst die Chemie der Sauerstoffbindung durch Häm etwas genauer anschauen. Wenn ein Sauerstoff-Molekül an das Häm-Eisen im Hämoglobin bindet, ordnen sich die Elektronen im Eisen-Ion neu an, und das Eisen geht aus dem sogenannten high spin Zustand in den low spin Zustand über. Das hat zwei Konsequenzen: einerseits wird das Eisenion kleiner, und andererseits verändern sich seine magnetischen Eigenschaften.

Bei der funktionalen Kernspintomographie (fMRI) – einer Untersuchungsmethode für Vorgänge im Gehirn – macht man sich diese Veränderung der magnetischen Eigenschaften zunutze. Damit lässt sich dann (mithilfe vieler weiterer Zwischenschritte, die ich and dieser Stelle mal weglasse) bildlich darstellen, welche Regionen des Gehirns gerade aktiv sind.

Porphyrien – wenn die Häm-Synthese gestört ist

Da Häm so wichtig ist, verwundert es auch nicht, dass Störungen in der Biosynthese von Häm Krankheiten verursachen. Diese Krankheiten nennt man Porphyrien und werden durch Defekte in den Enzymen verursacht, die Häm aufbauen.

Je nachdem, welches der Enzyme nicht funktioniert reichert sich ein unterschiedliches Zwischenprodukt der Häm-Biosynthese an und es treten unterschiedliche Symptome auf. Oft äußern sich Porphyrien mit sehr starken, plötzlich auftretenden Bauchschmerzen, es können aber auch neurologische Probleme oder Psychosen auftreten. Ein berühmter Fall ist der ehemalige britische König Georg III, der an einer psychischen Erkrankung litt, die vermutlich durch eine akute intermittierende Porphyrie verursacht wurde.

Das war meine Biomolekül des Monats. Falls es euch gefallen hat, dann schaut doch gerne auch in das Biomolekül des letzten Monats rein oder abonniert meinen Email-Newsletter, um keinen neuen Beitrag mehr zu verpassen.

Halloween-Special: Süßes oder Saures

Buh! Heute ist Halloween, und damit der Höhepunkt der Gruselsaison. Aber in diesem Halloween-Special wird es trotzdem nicht gruselig. Stattdessen geht es um den zweiten wichtigen Teil von Halloween: Süßes oder Saures.

Um zu unterscheiden, ob etwas süß oder sauer ist, brauchen wir unseren Geschmackssinn. Und um all die anderen Aromen von Süßigkeiten (und Anderem) wahrzunehmen, brauchen wir auch den Geruchssinn. Aber wie genau funktioniert das mit dem Schmecken?

Der Geschmackssinn

Mit unserer Zunge können wir im Prinzip nur fünf verschiedene Geschmacksrichtungen wahrnehmen: Süß, Sauer, Salzig, Bitter und Umami. Dass nur bestimmte Bereiche der Zunge bestimmte Geschmacksrichtungen wahrnehmen können, ist dabei ein Mythos. Überall auf der Zunge , wo Geschmacksknospen zu finden sind, kann auch jede Geschmacksrichtung wahrgenommen werden (die Verteilung ist allerdings tatsächlich ein bisschen unterschiedlich).

Als Geschmacksknospen werden kleine Ansammlungen aus Sinneszellen bezeichnet. Die Sinneszellen besitzen Ausstülpungen – die Mikrovilli – in denen die Geschmacksrezeptoren sitzen und die dazu dienen, die Oberfläche der Sinneszellen zum Mundraum hin zu erweitern. Die Geschmacksrezeptoren sind die Strukturen, die die einzelnen Geschmacksrichtungen identifizieren.

Eine Geschmacksknospe (Bild: Jonas Töle, gemeinfrei)

Es gibt Rezeptoren, die bestimmte Stoffe im Speichel erkennen können. Dazu gehören die Rezeptoren für Süß, Umami und Bitter. An den Rezeptor für Süßes (eigentlich ein Rezeptor-Heterodimer) binden alle Stoffe, die für uns süß schmecken, natürlicherweise vor allem verschiedene Zucker. Der Umami-Rezeptor (ebenfalls Dimer) erkennt vor allem die beiden Aminosäuren Glutamat und Aspartat, und Purinnukleotide (Bestandteile der DNA) können den Geschmack noch verstärken. Die Bitterrezeptoren sind etwas anders, da es davon sehr viele gibt und einzelne Rezeptoren nur einige wenige Stoffe erkennen. Im Inneren der Sinneszellen vermittelt dann das Signalprotein Gustducin, das dem Signalprotein beim Sehen – dem Transducin – sehr ähnlich ist, den Geschmacksreiz.

Die beiden anderen Geschmacksrichtungen, sauer und salzig, erkennen eher Eigenschaften des Speichels. Sauer entsteht durch den pH-Wert (wobei vielleicht auch eher der pH-Wert innerhalb der Sinneszellen entscheidet). Salzig ist hingegen abhängig von der Salinität, also der Salzkonzentration des Speichels. Welche Rezeptoren für die Wahrnehmung von Sauer und Salzig verantwortlich sind, ist noch nicht ganz geklärt – allerdings gibt es für Sauer zumindest einen heißen Kandidaten, den TRP-Kanal PKD2L1.

Eine Geschmackssinneszelle exprimiert immer nur Rezeptoren für eine Geschmacksrichtung (was lange diskutiert wurde). Aber in einer Geschmacksknospe kommen trotzdem Sinneszellen für jede einzelne Geschmacksrichtung vor. An der Unterseite der Geschmacksrezeptoren schließen sich Nervenzellen an, die den Geschmacksreiz dann zum Gehirn leiten.

Leider ist die Sache – wie so oft in der Biologie – nicht ganz so einfach. Denn offensichtlich können wir mehr schmecken als nur Süß, Sauer, Salzig, Bitter und Umami. Wie nehmen wir also komplexe Geschmäcker wahr, obwohl wir nur Sinneszellen für diese fünf Geschmacksrichtungen haben?

Einerseits wird diskutiert, ob vielleicht nicht doch noch mehr Geschmacksrezeptoren und -richtungen existieren. Zum Beispiel gibt es Rezeptoren für Fettsäuren, die zu einem Geschmack beitragen können. Außerdem könnte die Wahrnehmung von Ca2+– und Mg2+-Ionen auch einen Einfluss haben. Und dann gibt es noch Wahrnehmungsqualitäten, die eigentlich nicht so viel mit Geschmack zu tun haben. So ist Schärfe nämlich eigentlich ein Schmerzsignal – das bekannteste „Schärfe-Molekül“ Capsaicin bindet zum Beispiel an den Schmerzrezeptor TRPV1.

Das reicht aber noch nicht für einen komplexen Geschmack. Denn etwas wichtiges fehlt noch…

Der Geruchssinn

Wenn ihr euer Essen mit dem Mund zu euch nehmt (so wie man das im Normalfall eben macht) können flüchtige Moleküle – die Geruchsstoffe – über den Rachen in eure Nasenhöhle aufsteigen, wo sie auf Geruchsrezeptoren treffen. Geruchsrezeptoren gibt es im Gegensatz zu den Geschmacksrezeptoren extrem viele: grob 400 verschiedene. Trotzdem kann ein Geruchsrezeptor auch durch mehrere verschiedene Geruchsstoffe aktiviert werden.

Wie auch der Geschmackssinn, der noch lange nicht komplett verstanden ist, wirft auch der Geruchssinn noch einige Fragen auf. Es gibt einfach so enorm viele Geruchsrezeptoren. Um das mal etwas in Relation zu setzen: Die Geruchsrezeptoren gehören (wie die Süß-, Bitter- und Umamirezeptoren) zu den G-Protein gekoppelten Rezeptoren. Diese Rezeptoren bilden die größte Protein-Superfamilie beim Menschen überhaupt. Und nur die Geruchsrezeptoren machen in etwa die Hälfte davon aus! Außerdem gibt es Geruchsrezeptoren nicht nur in der Nase. Sie kommen beispielsweise auch auf der Zunge vor, oder interessanterweise auch in Geweben innerhalb des Körpers, die gar nicht von Geruchsstoffen erreicht werden können.

Ihr seht also, dass über den Geruchssinn deutlich mehr verschiedene Gerüche unterschieden werden können als Geschmacksrichtungen über den Geschmackssinn. Aber Geruch- und Geschmackssinn sind keine Rivalen, sondern arbeiten Hand in Hand. Denn auch der Geruchsreize werden über Nervenzellen in das Gehirn weitergeleitet, wo alle gesammelten Reize zu dem komplexen Eindruck Geschmack zusammengesetzt werden.

Alltäglich und doch komplex

Während ihr also nichtsahnend eure Halloween-Süßigkeiten esst, sind in eurem Mund und eurer Nase Millionen von Rezeptoren damit beschäftigt, alle möglichen Bestandteile der Süßigkeiten zu erkennen. Ihre Signale gelangen in das Gehirn, wo aus den vielen einzelnen Informationen zu Geschmacksrichtung, Geruch und allem anderen dann der schlussendliche Geschmack zusammengesetzt wird. Und obwohl Schmecken etwas so triviales und alltägliches ist, ist es eine enorm komplexe und herausfordernde Aufgabe für die Wissenschaft, die Details des Schmeckens zu verstehen.

Ich hoffe, diese kleine Halloween-Special hat euch gefallen (und euch nicht zu viel Heißhunger auf Süßes gemacht). Abonniert meinen Email-Newsletter, wenn ihr keine Beitrag mehr verpassen wollt, oder lest euch meinen letzten Text über CAR-T-Zelltherapie, wenn ihr noch mehr wollt.

Zelltherapie gegen Krebs: Was CAR-T-Zellen können und was sie nicht können

In den letzten Jahrzehnten hat die Medizin wirklich enorme Fortschritte gemacht, und in kaum einem anderen Bereich ist das so spürbar wie in der Krebstherapie. Tumorerkrankungen, die früher ein quasi sicheres Todesurteil darstellten, haben heute Heilungswahrscheinlichkeiten von 90% oder mehr! Möglich gemacht wurde das von einigen revolutionären Tumortherapien, die unsere Behandlungsmöglichkeiten nach und nach erweiterten. Angefangen hat in den 1940er Jahren alles mit N-Lost als erstes richtiges Zytostatikum. Richtig große Sprünge hat die Tumortherapie aber auch in den letzten Jahrzehnten gemacht, als zum Beispiel die ersten monoklonalen Antikörper aufkamen, oder mit Imatinib als der erste Tyrosinkinase-Inhibitor, der eine ganze Klasse von Wirkstoffen begründet hat. Aber hier soll es um eine der neuesten Revolutionen der Krebstherapie gehen, die CAR-T-Zellen. Und vor allem soll es darum gehen, wie die CAR-T-Zelltherapie in Zukunft noch effektiver und vielseitiger werden könnte.

Zelltherapie mit chimären Rezeptoren

Bei CAR-T-Zellen handelt es sich um den Wirkstoff (ja, auch ganze Zellen können ein Wirkstoff sein!) einer Zelltherapie zur Behandlung verschiedener Krebserkrankungen. Und das Prinzip dahinter ist so simpel wie genial: denn die CAR-T-Zelltherapie ermöglicht es unserem Immunsystem, Tumorzellen zu erkennen und zu töten. Dazu werden Patient:innen eine Art von Immunzellen – die T-Lymphozyten – entnommen, die dann gentechnisch modifiziert werden. Mithilfe eines viralen Vektors wird ein Gen in die Zellen eingeschleust, das für einen chimären Antigenrezeptor codiert (= CAR). Dafür werden z.B. Lentiviren verwendet, die häufig zur Transduktion (= Gentransfer durch Viren) von Säugerzellen eingesetzt werden. Das Gen wird in das Erbmaterial der T-Zellen eingebaut, die den chimären Antigenrezeptor daraufhin stabil exprimieren. Es ist dieser chimäre Rezeptor, der es den CAR-T-Zellen ermöglicht, Tumorzellen zu erkennen. Aber wieso? Wie schafft er es, den Zellen diese Fähigkeit zu verleihen?

Übersicht über den Ablauf der CAR-T-Zelltherapie (Bild: Michels, A. et al. 2020, DOI 10.1007/s00103-020-03222-8, CC BY 4.0)

Zusammengepuzzelte CARs

Manche Krebsarten exprimieren vermehrt bestimmte Antigene. Das bedeutet, dass von einer oder mehreren Arten von Proteinen mehr gebildet wird und diese dann auch auf der Oberfläche der Krebszellen sichtbar sind. CARs werden so entworfen, dass sie genau diese Antigene erkennen können. Häufig ist der Bereich der CARs, der dafür zuständig ist, an der Antigen-bindenden Struktur von Antikörpern orientiert. An dieser Antigen-bindenden Domäne hängt ein Linker, der sie mit einer Transmembrandomäne verbindet. Diese liegt (wie der Name vermuten lässt) innerhalb der Membran der CAR-T-Zellen. Sie leitet das Signal, dass der Rezeptor ein Tumor-Antigen gebunden hat, in das Innere der Zelle weiter. Die Transmembrandomäne stammt normalerweise aus einem von mehreren natürlich vorkommenden Proteinen aus Immunzellen (u.a. CD28 oder CD3).

Modell eines CARs (pink und orange) in der Memran (grau) zusammen mit dem Signalprotein ZAP70 (blau) (Bild: PDB-101, D. Goodsell, http://doi.org/10.2210/rcsb_pdb/mom_2017_10)

Im Inneren der Zelle angekommen folgt dann „nur“ noch die Signaldomäne. Sie ist der am ausführlichsten untersuchte Teil der CARs. Sie besteht ebenfalls aus einem Teil des CD3-Antigens, das aus „normalen“ T-Zellen stammt. Die Aktivierung des CARs führt dazu, dass einige Tyrosin-Aminosäuren der Signaldomäne phosphoryliert, also chemisch mit einer Phosphatgruppe verknüpft werden. Phosphorylierungen fungieren in der Biologie häufig als Signalweiterleitung. So auch hier, denn die Phosphorylierung der Signaldomäne aktiviert die T-Zelle, die daraufhin die von ihr erkannte Tumorzelle abtötet. Das allein reicht aber oft nicht aus. Deshalb wurden in der „zweiten Generation“ von CARs co-stimulierende Domänen hinzugefügt. Diese stammen ebenfalls aus Immunzellen und haben dort im Prinzip die gleiche Aufgabe. Sie verstärken das Signal zur Aktivierung von T-Zellen, aber mit dem kleinen Unterschied, dass in natürlichen T-Zellen der T-Zell-Rezeptor und der Co-Stimulator zwei getrennte Proteine sind.

Antigene erkennen ohne Brimborium

Ein chimärer Antigenrezeptor besteht also aus vielen unterschiedlichen Immunzell-Proteinen, die „einfach“ zu einem Rezeptor kombiniert wurden. Aber wieso das Ganze, wenn auch natürlich vorkommende Immunzellen die einzelnen Proteine besitzen? Um das zu verstehen, müssen wir uns erstmal anschauen, wie T-Zellen normalerweise aktiviert werden:

Zuerst ein kleiner Disclaimer: Es gibt diverse unterschiedliche Arten von T-Zellen, und nur eine davon, die zytotoxischen T-Zellen (die auch so schön poetisch T-Killerzellen genannt werden) tötet wirklich von ihr erkannte infizierte oder maligne Zellen ab. Die anderen sind dafür zuständig, Signalmoleküle auszuschütten, die Immunantwort zu regulieren oder ein immunologisches Gedächtnis zu bilden. Behaltet also einfach im Hinterkopf, dass „Die T-Zelle tötet die erkannte Zelle ab“ eine starke Vereinfachung ist.

Aber wie funktioniert dieses Erkennen und Abtöten jetzt? Zu diesem Zweck haben die T-Zellen den T-Zell-Rezeptor (der – wie das meiste in der Immunologie – ganz schön kompliziert aufgebaut ist). Mit diesem Rezeptor können die T-Zellen Antigene erkennen. In diesem Fall sind das Bestandteile von infizierten oder entarteten Zellen. Der T-Zell-Rezeptor kann diese Antigene aber nicht einfach so erkennen, nein, sie müssen ihm stattdessen von der anderen Zelle präsentiert werden. Dafür gibt es spezielle Proteine, die MHC-I heißen. Mit deren Hilfe präsentieren Zellen Schnipsel von quasi allen Proteinen, die sich in ihrem Inneren befinden. Bindet jetzt der T-Zell-Rezeptor ein Antigen auf einem MHC-I-Komplex, dann kommen die oben schon erwähnten Co-Stimulatoren ins Spiel. Diese müssen auch noch ihre entsprechenden Gegenstücke auf der Antigen-präsentierenden Zelle binden. Und wenn das der Fall ist, dann weiß die T-Zelle, dass es sich bei der Antigen-präsentierenden Zelle z.B. um eine Tumorzelle handelt und tötet sie ab. (Oder entfaltet eine der anderen möglichen Effekte von T-Zellen).

Das Schöne an CAR-T-Zellen ist, dass sie dieses ganze Brimborium mit MHC-I und Co-Stimulatoren nicht brauchen. Sie können Antigene dank der CARs auch einfach so erkennen. Das ist auch gut so, denn manche Krebszellen verzichten einfach darauf, ihre Antigene mit MHC-I zu präsentieren und können deshalb nicht vom Immunsystem erkannt werden (das ganze nennt sich Immunevasion). Die CAR-T-Zellen ermöglichen es dem Immunsystem aber wieder, diese Tumorzellen trotzdem zu erkennen und zu bekämpfen.

Künstlerische Darstellung einer CAR-T-Zelle (blau), die mit ihren CARs (rot) eine Leukämiezelle (grün) erkennt und attackiert (Bild: PDB-101, D. Goodsell, http://doi.org/10.2210/rcsb_pdb/mom_2017_10)

Was CAR-T-Zellen können und was sie nicht können

Aktuell sind sechs CAR-T-Zelltherapien in der EU zugelassen. Sie erkennen eines der beiden Proteine CD19 und BCMA, die in B-Lymphozyten vorkommen. Daher werden diese CAR-T-Zelltherapien auch bei Tumorerkrankungen von B-Lymphozyten wie beispielsweise der akuten lymphatischen Leukämie eingesetzt. Diese Behandlungen sind zwar extrem teuer – mehrere hunderttausend Euro – aber auch oft die letzte Hoffnung für Patient:innen. Und tatsächlich erreichen die CAR-T-Zelltherapien zum Teil sehr beeindruckende Heilungsraten.

Aber wieso werden CAR-T-Zellen dann nicht für viel mehr Arten von Krebserkrankungen verwendet? Die CAR-T-Zelltherapie bringt auch einige Schwierigkeiten mit sich. Einerseits können die CAR-T-Zellen sehr drastische Nebenwirkungen und toxische Effekte haben. Eine der Nebenwirkungen, das manchmal sogar lebensbedrohliche Zytokin-Freisetzungssyndrom, entsteht vermutlich, weil die CAR-T-Zellen “zu gut” sind. Denn weil auf einmal massenhaft Tumorzellen absterben, werden sehr viele Botenstoffe freigesetzt, die beispielsweise Fieber und Atembeschwerden auslösen können.

Außerdem ist die Verwendung von CAR-T-Zellen bei soliden Tumoren eine besondere Herausforderung. Denn einerseits müssen die CAR-T-Zellen erstmal einen Weg finden, in diese Tumore eindringen zu können. Andererseits schaffen Tumore sich oft eine Umgebung, in der Immunreaktionen unterdrückt werden. Zudem sind die Antigene aus soliden Tumoren viel häufiger auch in gesunden Zellen vorhanden, so dass es zu on-target off-tumor Effekten kommen kann, bei denen die CAR-T-Zellen gesundes Gewebe angreifen.

Allogene und ausschaltbare CAR-T-Zellen

Welche Möglichkeiten gibt es, diese Probleme zu lösen? Eine mögliche Lösung für die hohen Kosten könnten sogenannte allogene CAR-T-Zellen sein. Denn bisherige CAR-T-Zelltherapeutika werden aus den eigenen Zellen von Patient:innen hergestellt. Daher ist das jedes Mal ein individueller Prozess. Die Zellen von externen Spender:innen zu verwendet würde es ermöglichen, CAR-T-Zellen schon im Voraus in größeren Mengen herzustellen. Außerdem wären sie dadurch sofort einsatzbereit, anstatt erst nach der individuellen Herstellung, während der die Erkrankung weiter fortschreiten kann. Allerdings müssen dafür neue Probleme gelöst werden. Denn die fremden T-Zellen könnten zu einer Graft-versus-Host-Reaktion führen, also einer zytotoxischen Reaktion auf die allogenen Zellen. Außerdem werden die allogenen CAR-T-Zellen schneller durch das Immunsystem von Patient:innen beseitigt.

Um das Problem der Toxizität zu lösen, können Veränderungen am CAR selbst vorgenommen werden. Die co-stimulierende Domäne hat zum Beispiel einen großen Einfluss auf die Entstehung des Zytokin-Freisetzungssyndrom. Und tatsächlich könnte es auch helfen, die Affinität des Rezeptors für das Antigen zu verringern. Das vermindert zwar etwas die Wirksamkeit, aber vor allem attackieren die CAR-T-Zellen dadurch kaum noch gesundes Gewebe, sondern nur noch Tumorzellen.

Eine sehr spannende Möglichkeit sind ausschaltbare CAR-T-Zellen. Sie können durch die Gabe eines anderen Stoffs ausgeschaltet werden, sobald zu starke Nebenwirkungen auftreten. Das hat allerdings den Nachteil, dass dann keine CAR-T-Zellen mehr vorhanden sind, um die ursprüngliche Erkrankung zu bekämpfen. Daher wären CAR-T-Zellen am besten, die reversibel ausgeschaltet werden können. Eine Möglichkeit dafür, die schon untersucht wurde, ist der Tyrosinkinasehemmer Dasatinib. Es verhindert, dass die CAR-T-Zellen aktiviert werden können. Sobald es allerdings nicht mehr gegeben wird, sind die Zellen wieder aktivierbar und einsatzbereit.

Fazit

Das war jetzt ein ziemlich langer Text, aber über CAR-T-Zelltherapie gibt es auch einfach viel zu sagen. Das Konzept ist super spannend, und die Möglichkeit, Immunzellen so zu verändern, dass sie gegen Tumorzellen vorgehen, ist ein enormer Erfolg in der Krebstherapie.

Trotzdem müssen wir Wege finden, um das Konzept breiter anwenden zu können, gerade für solide Tumore. Auch dafür existieren tatsächlich schon Ideen (z.B. probiotic-guided CAR-T-Zellen), wie auch für viele andere Möglichkeiten, die Hürden zu einer breiteren Anwendung zu überwinden. Die Forschung an CAR-T-Zellen geht auf jeden Fall weiter, und wir werden abwarten müssen, ob und welche weiteren CAR-T-Zelltherapeutika ihren Weg in die Klinik finden.

Falls euch dieser Text gefallen hat, dann abonniert doch gerne meinen Email-Newsletter. Damit verpasst ihr in Zukunft keine neuen Beiträge auf PharmBlog mehr. Und falls ihr noch mehr zu dem Thema lesen möchtet, empfehle ich euch diese Review, das allerdings auch schon von 2019 ist und daher die allerneuesten Themen möglichweise nicht abbildet.

Nobelpreis-Spezial: Physiologie oder Medizin 2023

Es ist wieder die Zeit des Jahres, zu der die Nobelpreise verkündet werden. Den Anfang gemacht hat heute – am 02.10.23 – der Nobelpreis für Physiologie oder Medizin, und ich denke, dass das Ergebnis für viele nicht sehr überraschend war. Denn gewonnen haben Katalin Karikó und Drew Weissman „für ihre Entdeckungen zu Modifikationen von Nukleobasen, die die Entwicklung von effektiven mRNA-Impfstoffen gegen COVID-19 ermöglichten“.

Die schnelle Entwicklung von Impfstoffen gegen COVID-19 während der Pandemie war ohne Frage ein unglaublicher Erfolg und hat Millionen von Menschenleben gerettet. Daher war es eigentlich auch nur eine Frage der Zeit, bis dafür auch ein Nobelpreis verliehen wird. Tatsächlich ist es aber doch recht ungewöhnlich, dass es diesen Preis so „früh“ nach der Entwicklung der Impfstoffe gibt, denn häufig vergehen nach der Leistung, die ausgezeichnet wird und der Preisverleihung deutlich mehr Jahre. Allerdings sind die Beweise, dass mRNA-Impfstoffe ein großer Erfolg und dieses Preises absolut würdig sind auch so überwältigend, dass diese Ausnahme wohl verständlich ist.

Ich persönlich hätte – nach der Argumentation von Lars Fischer in diesem Artikel – diesen Preis eher in der Kategorie Chemie gesehen, zusammen mit einer Auszeichnung für die chemische DNA-Synthese. Tatsächlich war das eine sehr häufige Prognose und jetzt bleibt es wohl spannend, wer stattdessen mit dem Chemie-Nobelpreis ausgezeichnet wird.

Das war jetzt aber genug des Vorgeplänkels. Schauen wir uns endlich die Wissenschaft an, für die Karikó und Weissman diesen Preis bekommen haben.

Nukleobasen und mRNA-Modifikationen

Grundsätzlich ist es keine neue Idee, RNA oder DNA für Impfstoffe einzusetzen, da das einige Vorteile gegenüber typischen Impfstoffen aus attenuierten oder inaktivierten Viren oder auch vektor-basierten Impfstoffen bietet (von denen eine billigere Produktion nicht der Unwichtigste ist). Lange Zeit war aber die Immunogenität dieser Impfstoffe ein großes Problem, neben einigen anderen Problemen mit ihrer Effektivität. Immunogenität bedeutet, dass sie eine starke Entzündungsreaktion auslösten und damit einfach unbrauchbar für den Einsatz als Impfstoff waren.

Das liegt daran, dass unsere Zellen eine eingebaute Abwehr gegen fremde RNA besitzen. Viele Viren haben nämlich ein Erbgut aus RNA, und diese virale (aber auch bakterielle) RNA erkennen und neutralisieren zu können ist extrem wichtig für unseren Schutz vor Infektionen. Daher gibt es in unseren Zellen Rezeptoren – die toll-like Rezeptoren, kurz TLRs – die diese Aufgabe übernehmen.

Karikó und Weissman haben mit ihren Teams erkannt, dass dieser Schutzmechanismus auch von in vitro-transkribierter mRNA ausgelöst wird. Das ist mRNA, die nicht aus Zellen stammt und eben jene, die für Impfstoffe eingesetzt wird. Denn die in vitro-transkribierte mRNA ist genauso wie virale und bakterielle mRNA wenig modifiziert. Eukaryoten wie wir Menschen hingegen verändern unsere mRNA ziemlich stark. Und an diesen Veränderungen unterscheidet unser Immunsystem unsere eigene von fremder mRNA.

RNA besteht im Prinzip aus einer Abfolge von vier Nukleobasen, die an einem Rückgrat aufgereiht sind. Das sind einmal Adenin, Guanin und Cytosin, genau wie bei der DNA. Wo bei der DNA aber die Base Thymin ist, hat die mRNA stattdessen die Base Uracil. Wie gesagt werden diese Basen von unseren Zellen noch zusätzlich verändert. Die entscheidende Idee für die mRNA-Impfstoffe war es also, auch die Basen der Impfstoff-mRNA zu verändern.

Karikó und Weissman entdeckten, dass die Modifikation von Uridin die Immunreaktion auf die in vitro-transkribierte mRNA fast vollständig verhinderte, und dass der Austausch von Uridin zu der Base Pseudouridin zusätzlich noch die Proteinexpression deutlich erhöhte. Dadurch entstehen nicht nur weniger Entzündungsreaktionen, sondern die Effektivität der Impfstoffe wurde auch erhöht, weil mehr des Antigens, für das die Impfstoff-mRNA codiert, hergestellt wird.

Strukturen von Uridin, Pseudouridin und N1-Methylpseudouridin (Kim et al. 2022, DOI: 10.1016/j.celrep.2022.111300)

Außerdem fanden die beiden Preisträger:innen heraus, dass bei der Herstellung der Impfstoff-mRNA auch kleine Mengen an doppelsträngiger RNA entstehen, die ebenfalls von toll-like Rezeptoren erkannt wird. Karikó und ihr Team entwickelten daraufhein eine Technik, um diese Verunreinigungen mittels HPLC zu entfernen.

Damit hatte der Siegeszug der mRNA-Modifikation für Impfstoffe begonnen, und auch die beiden mRNA-Impfstoffe gegen COVID-19 von BioNTech und Moderna enthalten diese Modifikationen. Bei ihnen kommt vor allem die modifizierte Base N1-Methylpseudouridin zum Einsatz, die sich als noch effektiver als Pseudouridin herausstellte.

Ich hoffe, das hat euch einen kleinen Überblick über die Wissenschaft hinter diesem Nobelpreis für Physiologie oder Medizin gegeben. Wenn ihr noch mehr erfahren wollt, kann ich euch wie immer die sehr ausführlichen Advanced Information auf der Webseite der Nobelpreise empfehlen, oder auch dieses Review zu mRNA-Impfstoffen von 2021.

Natürlich wird es auch zu dem Chemie-Nobelpreis 2023 einen Text von mir geben, und bis dahin könnt ihr gerne meinen Newsletter abonnieren, damit ihr keinen Blogbeitrag mehr verpasst.

Gratulation an Katalin Karikó und Drew Weissman!

« Older posts

© 2024 PharmBlog

Theme by Anders NorenUp ↑

WordPress Cookie Notice by Real Cookie Banner