Ein Blog über die Wissenschaft hinter Arzneimitteln

Category: Biomolekül des Monats

Die verborgenen Botenstoffe des Gehirns: Neuropeptide

Meine Biomoleküle dieses Monats sind Botenstoffe des Gehirns, die zwar sehr unterschiedlich sein können, aber trotzdem alle einen großen Einfluss auf die Kommunikation zwischen Nervenzellen haben. Sie sind an den grundlegendsten Funktionen des Körpers beteiligt und Störungen in diesem System können mitunter zur Entstehung vieler Erkrankungen führen: die Neuropeptide.

Über einhundert Neuropeptide

Was Neuropeptide genau sind, ist aber gar nicht so einfach zu beantworten. Denn im Vergleich zu anderen Signalmolekülen im Gehirn gibt es von ihnen deutlich mehr und auch deutlich unterschiedlichere. Der – sehr passend benannte – Text What Are Neuropetides? beschreibt sie so: „Ein Neuropeptid ist ein kleiner, proteinartiger Stoff, der von Nervenzellen produziert und gesteuert freigesetzt wird, und auf neuronale Strukturen wirkt“.

In diesem Satz steckt eine ganze Menge drin, aber bevor wir ihn genauer unter die Lupe nehmen, schauen wir uns gemeinsam einige Beispiele für Neuropeptide an: Da wären zum Beispiel die endogenen Opioide, die unter anderem bei der Empfindung von Schmerzen oder Stress wichtig sind, das als „Kuschelhormon“ bekannte Oxytocin, Vasopressin, das den Wasserhaushalt des Körpers und damit auch den Blutdruck steuert, oder ACTH, das den Cortisol-Spiegel im Blut reguliert. Außerdem gibt es noch  über einhundert andere Neuropeptide, die alle unterschiedlichste Funktionen übernehmen. Um zu erfahren, was diese mehr als einhundert Stoffe mit ihren verschiedenen Funktionen gemeinsam haben, müssen wir uns der obenstehenden Definition widmen.

Neuropeptid oder Hormon – oder beides?

„Kleiner, proteinartiger Stoff“ ist relativ selbsterklärend. Neuropeptide sind – offensichtlicherweise – Peptide, bestehen also wie Proteine auch aus Aminosäuren. Und klein sind sie, weil sie nur aus wenigen Aminosäuren bestehen.

Sie stammen aus Nervenzellen und werden von ihnen erst auf ein bestimmtes Signal hin freigesetzt. Und wenn sie freigesetzt wurden, binden sie wieder an Rezeptoren in der Membran einer Nervenzelle und beeinflussen dort die Signalweiterleitung.

„Aber“, werden manche von euch jetzt sagen, „du hast gesagt, dass Oxytocin oder Vasopressin Neuropeptide sind. Sind das nicht eigentlich Hormone?“ Und damit hättet ihr zwar recht, ich hätte allerdings ebenso recht. Denn ein Stoff kann gleichzeitig ein Hormon und ein Neuropeptid sein: Hormone sind Substanzen, die von einem Organ freigesetzt werden, über den Blutkreislauf weitertransprotiert werden, und dann auf ein anderes Organ wirken. Damit können einige Neuropeptide ohne Probleme auch Hormone sein. Und nicht nur das: Manche Stoffe, die von Nervenzellen freigesetzt werden – und damit als Neuropeptide gelten – können auch von anderen Zellen abgegeben werden und sind in diesem Fall dann keine Neuropeptide, sondern „nur“ Peptidhormone. Etwas verwirrend, ich weiß, aber letztendlich bedeutet das nur, dass ein und der selbe Stoff gleichzeitig ein Neuropeptid und ein Hormon sein kann, oder er kann zwar beides sein, aber jeweils in anderen Kontexten.

Ob das jetzt so wichtig ist? Da bin ich mir nicht so sicher. Denn schließlich sind „Neuropeptid“ und „Hormon“ nur menschengemachte Kategorien, um die Realität zu beschreiben, und in welche Kategorie wir eine Substanz stecken, ändert ihre Realität nicht.

Neuropetide steuern Hunger und Sättigung

Aber um weniger endlich weniger theoretisch zu werden, und uns Neuropeptide „in Aktion“ anzuschauen, betrachten wir zwei Substanzen, die an der Entstehung von Adipositas beteiligt sein können: α-MSH und NPY.

Beide sind unter anderem an der Regulation von Hunger- und Sättigungsgefühlen beteiligt und sind daher im Fokus der Adipositas-Forschung. Auch wenn ich mich jetzt auch auf diese Aufgabe der beiden Neuropeptide konzentrieren werde, sind sie ebenfalls wichtig für viele weitere Körperfunktionen.

α-MSH entsteht aus dem Vorläuferpeptid POMC. Denn je nachdem, wie POMC gespalten wird, können verschiedene Neuropetide daraus entstehen. In manchen Nervenzellen werden daraus die Melanocortine α-MSH, β-MSH oder γ-MSH gebildet, in anderen wiederum endogene Opioide oder ACTH, das die Synthese von Cortisol steuert. So ein Vorläuferpeptid, aus dem verschiedene Produkte entstehen können, ist sehr typisch für die Neuropeptide.

Wenn α-MSH dann gebildet ist – normalerweise, wenn wir etwas gegessen haben – kann es Rezeptoren an der Oberfläche anderer Nervenzellen aktivieren und dort seinen Effekt vermitteln:  der Hunger lässt nach und ein Sättigungsgefühl stellt sich ein.

Bei Menschen, die z.B. an genetisch bedingtem POMC-Mangel leiden, funktioniert dieser Regulationsmechanismus nicht. Der Hunger lässt trotz Essens nicht nach, und die Patient:innen entwickeln schweres Übergewicht. Daher gibt es einen Arzneistoff, Setmelanotid, der genauso wie α-MSH die entsprechenden Rezeptoren aktivieren und die Sättigung auslösen kann.

Struktur von NPY (Bild: Nevit Dilmen, Struktur: PDB 1RON)

NPY hat die entgegengesetzte Rolle: Die Freisetzung von NPY induziert Hunger, und auch Mutationen im NPY-System sind mit der Entstehung von Adipositas assoziiert. NPY wird genauso wie α-MSH aus einem Vorläuferpeptid gebildet, dem Prepro-NPY. Hier können daraus allerdings nicht so viele weitere Stoffe entstehen wie aus POMC, sondern nur ein weiterer, das C-flanking peptide, über das es nur sehr wenig Literatur gibt.

Und natürlich, wie das in der Biologie meistens ist, hängen die Signalwege von α-MSH und NPY auch zusammen. Zum Beispiel kann das gleiche Signal, das die Freisetzung von α-MSH auslöst, die Ausschüttung von NPY hemmen.

Das nur als kleines Beispiel für die Bedeutung von Neuropeptiden bei der Steuerung von so grundlegenden Dingen wie Hunger und Sättigung. Aber auf ähnliche Weise sind noch dutzende andere Neuropeptide an genauso grundlegenden Prozessen beteiligt.

Wenn euch dieser Text über die Neuropeptide gefallen hat, dann abonniert doch gerne meinen Newsletter, um keinen neuen Blogpost mehr zu verpassen oder lest meinen Beitrag über die vorherigen Biomoleküle des Monats, die nicht codierenden RNAs.

Biomolekül des Monats: nicht-codierende RNA

Spätestens seit Aufkommen der mRNA-Impfstoffe haben viele zumindest eine grobe Ahnung, was RNA ist. Aber es gibt nicht nur die mRNA, denn eigentlich ist die mRNA – wenn auch die prominenteste der RNA-Arten – deutlich in der Minderheit. Tatsächlich sind 98% aller RNA von Eukaryoten (das heißt Lebewesen mit Zellkern) sogenannte nicht-codierende RNA. Daher sind die nicht-codierenden RNAs meine Biomoleküle des Monats, und in diesem Text werden wir uns diese zu wenig beachteten 98% der RNA etwas genauer anschauen.

mRNA und Translation

Aber beginnen wir doch trotzdem kurz mit der mRNA. Das „m“ steht hier für messenger und genau das ist die mRNA. Sie transportiert die Information über den Aufbau von Proteinen, die auf der DNA gespeichert ist, zu den Ribosomen. Die wiederum übersetzen diese Information dann in einem Translation genannten Prozess in ein Protein. Daher ist die mRNA auch codierende RNA – sie codiert Informationen für den Aufbau von Proteinen.

Für die Translation werden klassischerweise noch zwei anderen Typen von RNA gebraucht: die ribosomale rRNA und die transfer- tRNA. Das sind schon die ersten beiden nicht-codierenden RNAs, denn sie tragen keine Information über die Aminosäuresequenz eines Proteins. Stattdessen ist die rRNA Bestandteil der Ribosomen und die tRNA transportiert die Aminosäuren zum Ribosom und macht die eigentliche „Übersetzungsarbeit“ von mRNA zu Protein.

Dreidimensionale Struktur einer tRNA . Ganz unten, an der “Spitze” befindet sich das Anticodon, das an die mRNA bindet und eine bestimmte Abfolge von drei Basen erkennt (S. cerevisiae Phe-tRNA, PDB 1EHZ)

“Die RNA ist keine Wäscheleine”

Bevor wir uns die anderen nicht-codierenden RNAs anschauen, müssen wir kurz klären, was RNA eigentlich ist: RNA ist eine Nukleinsäure – die Abkürzung RNA steht für ribonucleic acid – und besteht wie die DNA aus einem Zucker-Phosphat-Rückgrat und einer Abfolge von Basen, die bei der mRNA die Information codiert.

Der Unterschied zur DNA besteht in dem Zucker – Ribose statt 2‘-Desoxyribose – und in einer Base – Uracil statt Thymin. Einige Arten von RNA beinhalten aber tatsächlich noch andere, seltenere Basen. Außerdem ist RNA keine Doppelhelix sondern liegt typischerweise einzelsträngig vor. Aber, wie mein Biolehrer in der Schule immer sagte, „die RNA ist keine Wäscheleine“. Stattdessen bildet auch sie lokale Strukturen und Basenpaarungen mit komplementären Basen (U und A sowie C und G) des gleichen oder eines anderen RNA-Strangs.

Aufbau der RNA aus Zucker-Phosphat-Rückgrat und Basen

Und RNAs, die an komplementäre RNA-Stränge binden können, sind weitere wichtige nicht-codierende RNAs.

Interferenz – Kontrolle der Genexpression

Sowohl miRNAs (mi für micro) als auch siRNAs (si für small interfering) machen sich die Bindung an komplementäre mRNA zunutze, um die Genexpression – also die tatsächliche Umsetzung der genetischen Information in ein Protein – zu regulieren.

miRNAs sind genetisch codiert und nach einem relativ komplizierten Herstellungsprozess entsteht ein doppelsträngiges Stück RNA, die reife miRNA. Zusammen mit einigen Protein kann einer dieser RNA-Stränge einen miRISC genannten Komplex bilden. Die miRNA in miRISC kann jetzt an eine komplementäre Stelle in einem mRNA-Strang binden. Typischerweise findet diese Bindung in einem Teil der mRNA statt, die 3‘-untranslatierte Region genannt wird und keine Information über den Aufbau eines Proteins trägt. Die Bindung von miRNA und RISC führt dann dazu, dass der mRNA-Strang abgebaut wird, und das darauf codierte Protein wird nicht hergestellt. Das geschieht, indem die schützenden Enden der mRNA – 3‘-poly-A-Ende und 5‘-cap – entfernt werden. Ohne diesen Schutz ist mRNA in einer Zelle extrem instabil und wird sehr schnell zerstört.

RISC aus einem Protein (blau) und miRNA gebunden and eine mRNA (beides rot) (PDB 6N4O)

Da die Biologie in den allermeisten Fällen effizient ist und Mechanismen für unterschiedliche Dinge verwendet – was für uns dann oft chaotisch erscheint – ist das nicht die einzige Funktion der miRNA: Sie kann auch die Translation gebundener mRNA hemmen, oder sogar die Genexpression direkt an der DNA im Zellkern beeinflussen.

Ganz ähnlich funktioniert die siRNA. Ihre Biosynthese ist zwar etwas anders, aber auch sie bildet RISCs, die bestimmte mRNA-Stränge erkennen und diese zerstören oder anderweitig ihre Translation verhindern. Durch die komplementäre Basenpaarung der mi- oder siRNA mit ihrer Ziel-mRNA ist dieser Regulationsmechanismus sehr spezifisch.

Diese Spezifität kann man auch für die Arzneitherapie nutzen. Es ist möglich, ganz gezielt Gene, die in eine Erkrankung involviert sind, abzuschalten. Givosiran beispielsweise ist ein siRNA-basierter Arzneistoff, der zur Behandlung der akuten intermittierenden Porphyrie verwendet wird – über Porphyrien habe ich in meinem Text über Häm ein wenig geschrieben. Das gleiche Prinzip wird häufig in der Molekularbiologie verwendet: Durch das Abschalten eines bestimmten Genes kann z.B. dessen Rolle in einem biologischen Prozess untersucht werden.

Ribozyme

Obwohl das noch lange nicht alle nicht-codierenden RNAs waren, möchte ich zum Abschluss nur noch eine davon erwähnen: die Ribozyme. Ribozyme sind RNA-Moleküle, die chemische Reaktionen katalysieren können, ganz genauso wie die bekannteren und häufigeren Enzyme. Ein Beispiel habe ich weiter oben sogar schon einmal erwähnt. Denn manche rRNAs, aus der Ribosomen aufgebaut sind, besitzen katalytische Aktivität und fügen die Aminosäuren eines gerade entstehenden Proteins zusammen.

Ribozyme sind außerdem eine wichtige Stütze der RNA-Welt-Hypothese. Sie besagt, dass die frühesten Lebewesen auf RNA sowohl als Informationsspeicher als auch zur Katalyse von Reaktionen basierten. Diese Aufgaben werden in allen modernen Lebensformen vorranging von DNA bzw.  Proteinen übernommen, womit die Ribozyme eine Art „Überbleibsel“ der RNA-Welt sein könnten. (Eine sehr anschauliche, aber nicht wirklich zutreffende Beschreibung von Ribozymen wären Fossilien aus der RNA-Welt.)

Das war jetzt also ein kurzer Rundumschlag zu den 98% der RNA, die keine mRNA sind. Es gäbe – wie bei fast jedem Thema – noch so viel mehr zu sagen, aber das muss dann wohl bis zu einem anderen Blogpost warten. Und falls ihr keine neuen Beiträge mehr verpassen wollt, dann abonniert doch gerne meinen Email-Newsletter.

Biomolekül des Monats: Häm

Diesen Monat wird es blutig, denn mein Biomolekül ist eines der wichtigsten Moleküle unseres Blutes. Mir ist bewusst, dass es für diesen Titel unglaublich viele Kandidaten gibt. Aber die wohl bekannteste Funktion des Bluts ist es, Sauerstoff zu transportieren; und dafür wird ein Molekül ganz besonders benötigt: Häm.

Und auch wenn Häm allein deshalb schon wortwörtlich lebenswichtig ist, möchte ich euch hier nicht nur zeigen, wie Häm überhaupt Sauerstoff transportieren kann. Ich möchte euch stattdessen auch die anderen wichtigen Funktionen von Häm vorstellen, sowie die Krankheiten, die entstehen, wenn die Biochemie des Häm gestört ist.

Die Basics

Über Häm und die Stoffklasse zu der es gehört – die Porphyrine – gibt es eine Menge zu sagen, und unglücklicherweise ist hier nicht der Ort, um das alles auszuführen. Aber um ein paar der Basics werden wir uns auf jeden Fall kümmern:

Häm ist ein organisches Molekül, das mit vier Stickstoffatomen ein Eisenion in seiner Mitte koordiniert. Mit diesem Eisenion kann es ein Sauerstoff-Molekül binden, und das ist es, was Häm für uns so wichtig macht. Sauerstoff, wenn er von unserem Blut zu allen möglichen Geweben im Körper transportiert wird, liegt an Häm gebunden vor. Das ist die bekannteste und eine wirkliche wichtige Funktion von Häm, aber lange nicht die einzige. Dazu jedoch später mehr.

Struktur von Häm b, der häufigsten Form von Häm beim Menschen

Das Eisen kann in zwei unterschiedlichen Oxidationsstufen vorliegen: Eisen(II) und Eisen(III). Eisen(II) hat nur ein Elektron mehr als Eisen(III), trotzdem ist nur diese Form in der Lage, Sauerstoff zu binden. Ab und zu wird das Eisen(II) im Häm natürlicherweise zu Eisen(III) oxidiert, aber das ist kein Problem. Denn es gibt ein spezielles Enzym (die Methämoglobin-Reduktase), dessen Aufgabe es ist, das Eisen(III) in Hämoglobin (siehe unten) wieder zum Eisen(II) zu umzusetzen. Es gibt aber auch einige Gifte – wie beispielsweise Nitrite – die das Häm-Eisen oxidieren können, wogegen die Methämoglobin-Reduktase dann nicht mehr ankommt.

Häm in Hämoglobin und darüber hinaus

Eine sehr wichtige Sache habe ich aber bis jetzt verschwiegen. Denn das Häm kann seine Aufgaben nicht allein erfüllen. Es ist eine sogenannte prosthetische Gruppe – ein Molekül, das mit einem Protein verbunden ist, aber nicht selbst aus Aminosäuren besteht. Daher braucht das Häm ein Protein, um zu funktionieren, um im Gegenzug braucht das entsprechende Protein das Häm.

Und noch etwas habe ich bisher verschwiegen: Es gibt auch verschiedene Arten von Häm. Wenn wir also wissen wollen, welche Aufgaben Häm im menschlichen Körper hat, müssen wir uns anschauen, welche Arten von Häm in welchen Proteinen vorkommen.

Fangen wir wieder mit dem Klassiker an: Häm b (auch Fe-Protoporphyrin IX genannt) und Hämoglobin. Hämoglobin ist das Protein, das in Erythrozyten – den roten Blutzellen – vorkommt und für den Sauerstofftransport verantwortlich ist (und zusätzlich dem Blut die rote Farbe verleiht). Es besitzt vier Häm-Gruppen und eine ganz interessante Eigenheit, den kooperativen Effekt. Die vier Häm-Gruppen binden Sauerstoff nicht unabhängig voneinander. Stattdessen wird, wenn eine der Häm-Gruppen ein Sauerstoff-Molekül gebunden hat, die Bindung von Sauerstoff an die anderen Häm-Gruppen stark begünstigt. Und umgekehrt werden, wenn das mit Sauerstoff beladene Hämoglobin ein Sauerstoff-Molekül abgibt, auch die anderen drei Sauerstoff-Moleküle leichter abgegeben. Das ist nötig, damit das Hämoglobin in der Lunge zwar vollständig mit Sauerstoff beladen werden, es diesen Sauerstoff in den anderen Geweben dann aber auch effektiv wieder abgeben kann.

Die Bewegung von Hämoglobin, wenn Sauerstoff (hellblau) an die Hämgruppe (rot) des Hämoglobins bindet, ermöglicht des kooperativen Effekt (Bild: Shuchismita Dutta, David Goodsell, DOI 10.2210/rcsb_pdb/mom_2003_5)

Häm b kommt außerdem noch in Myoglobin vor. Myoglobin besitzt eine Häm-Gruppe und ist ebenfalls für den Sauerstofftransport zuständig. Allerdings nicht im Blut, sondern innerhalb von Muskeln.

Auch eine ganze Menge von Enzymen brauchen Häm b, um ihre Aufgaben zu erfüllen. Dazu gehören beispielsweise Enzyme aus dem Energiestoffwechsel, mit denen wir aus Nährstoffen Energie gewinnen können. Außerdem ist eine extrem große Enzym-Familie – die CYP-Enzyme – Häm-abhängig. Sie verstoffwechseln sowohl körpereigene als auch Fremdstoffe und sind außerdem an der Herstellung wichtiger Botenstoffe wie der Steroidhormone beteiligt. An dieser Stelle muss ich eine weitere Vereinfachung gestehen, die ich weiter oben getroffen habe. Denn im Zuge des (sehr spannenden) Mechanismus von CYP-Enzymen liegt das Eisen nicht nur in den Oxidationsstufen II und III vor, sondern auch in den Stufen IV und V.

Kristallstruktur von CYP3A4 mit Häm-Gruppe (PDB: 4I3Q, 2013)

Außer Häm b gibt es außerdem noch Häm a und Häm c (und einige weitere). Häm a und Häm c sind beides Teil von Enzymen der Atmungskette, also ebenfalls wichtig für die Energiegewinnung.

fMRI dank Häm

Das Häm-Eisen besitzt außerdem eine chemische Eigenschaft, die uns die effektive Untersuchen von Hirnfunktionen ermöglicht. Um das zu verstehen, müssen wir uns erst die Chemie der Sauerstoffbindung durch Häm etwas genauer anschauen. Wenn ein Sauerstoff-Molekül an das Häm-Eisen im Hämoglobin bindet, ordnen sich die Elektronen im Eisen-Ion neu an, und das Eisen geht aus dem sogenannten high spin Zustand in den low spin Zustand über. Das hat zwei Konsequenzen: einerseits wird das Eisenion kleiner, und andererseits verändern sich seine magnetischen Eigenschaften.

Bei der funktionalen Kernspintomographie (fMRI) – einer Untersuchungsmethode für Vorgänge im Gehirn – macht man sich diese Veränderung der magnetischen Eigenschaften zunutze. Damit lässt sich dann (mithilfe vieler weiterer Zwischenschritte, die ich and dieser Stelle mal weglasse) bildlich darstellen, welche Regionen des Gehirns gerade aktiv sind.

Porphyrien – wenn die Häm-Synthese gestört ist

Da Häm so wichtig ist, verwundert es auch nicht, dass Störungen in der Biosynthese von Häm Krankheiten verursachen. Diese Krankheiten nennt man Porphyrien und werden durch Defekte in den Enzymen verursacht, die Häm aufbauen.

Je nachdem, welches der Enzyme nicht funktioniert reichert sich ein unterschiedliches Zwischenprodukt der Häm-Biosynthese an und es treten unterschiedliche Symptome auf. Oft äußern sich Porphyrien mit sehr starken, plötzlich auftretenden Bauchschmerzen, es können aber auch neurologische Probleme oder Psychosen auftreten. Ein berühmter Fall ist der ehemalige britische König Georg III, der an einer psychischen Erkrankung litt, die vermutlich durch eine akute intermittierende Porphyrie verursacht wurde.

Das war meine Biomolekül des Monats. Falls es euch gefallen hat, dann schaut doch gerne auch in das Biomolekül des letzten Monats rein oder abonniert meinen Email-Newsletter, um keinen neuen Beitrag mehr zu verpassen.

Biomolekül des Monats: Steroide und Isoprenoide

Quizfrage: Was haben Cholesterin, Vitamin E, die ätherische Ölkomponente Limonen und Testosteron gemeinsam? Ihre Biosynthese beginnt mit ein und dem selben Stoff. Zumindest formal gesehen ist dieser Stoff Isopren, weshalb sie auch alle zu der Stoffklasse der Isoprenoide gehören.

Die Isoprenoide

Isopren und die Isoprenoide sind meine Biomoleküle des Monats. Wir werden uns anschauen, weshalb der Vorläufer der Isporenoide eben nur formal gesehen das Isopren ist, wie die Biosynthese funktioniert und warum vor allem die Untergruppe der Steroide extrem wichtig für unsere Gesundheit und die Pharmazie ist.

Isopren ist ein relativ kleiner Kohlenwasserstoff mit zwei Doppelbindungen, der – wenn man ihn im richtigen Winkel betrachtet – ein bisschen aussieht wie ein Pferd. Er kommt in der Natur ziemlich häufig vor, aber eben nicht (anders als der Name vermuten lässt) als Ausgangsstoff für die Biosynthese der Isoprenoide.

Struktur von Isopren

Dafür werden nämlich zwei Stoffe verwendet, die man als aktiviertes – also als für eine chemische Reaktion zugänglich gemachtes – Isopren bezeichnen könnte: IPP und DMAPP. Das steht für Isopentylpyrophosphat und Dimethylallylpyrophosphat. Aber weil ich mich dabei immer mindestens einmal verschreibe, bleibe ich bei den Abkürzungen.

Es gibt wirklich sehr viele Isoprenoide, und sie kommen in jeder Domäne des Lebens vor. Gerade Pflanzen bilden viele Terpene, eine Untergruppe der Isoprenoide, zu der z.B. ätherische Öle und einige Vitamine (und Vitamin-Vorläufer) gehören.

Aber ich möchte mich hier eher auf eine sehr wichtige Art der tierischen (und damit auch die menschlichen) Isoprenoide konzentrieren: die Steroide.

Die Steroide

Steroide entstehen im Prinzip dadurch, dass erst ein Molekül IPP und ein Molekül DMAPP miteinander verknüpft werden. Danach werden einfach nur immer mehr IPP-Einheiten angehängt, bis eine ziemlich lange Kette entstanden ist, das Squalen. Dann wird aus dieser langen Kette ein Ringsystem mit fünf Ringen gebildet, das Grundgerüst aller Steroide.

Und an dieses Grundgerüst können dann diverse „Dekorationen“, also unterschiedliche chemische Gruppen, angehängt werden. Erstmal entsteht daraus Cholesterin. Die meisten Menschen kennen Cholesterin wahrscheinlich als Risikofaktor für Herzinfarkte oder Schlaganfälle. Und das ist es auch, wenn die Konzentration an „schlechtem Cholesterin“ – dem Lipoprotein LDL – im Blut zu hoch ist. Aber Cholesterin ist auch ein extrem wichtiger Bestandteil unserer Zellmembranen, denn es verleiht ihnen unter anderem ihre Fluidität.

Und außerdem entstehen aus Cholesterin auch alle Steroidhormone. Dazu gehört das Stresshormon Cortisol, von dem wahrscheinlich auch alle schon einmal gehört haben. Die Ausschüttung von Cortisol hat sehr viele verschiedene Wirkungen auf den Körper, beispielsweise fördert es den katabolen (also den abbauenden) Stoffwechsel oder beeinflusst den Blutdruck. Und natürlich sind Cortisol und seine synthetischen Derivate aus der Arzneitherapie nicht mehr wegzudenken, wo sie extrem erfolgreich zur Entzündungshemmung verwendet werden.

Übersicht über die Biosynthese der Steroidhormone, die alle aus Cholesterol gebildet werden (Bild: Mikael Häggström derivative work (german translation): Benff, CC BY-SA 3.0)

Sehr (wirklich sehr) ähnlich zum Cortisol ist das Aldosteron, das in der Niere wirkt. Dort hemmt es die Ausscheidung von Na+-Ionen, und durch den resultierenden osmotischen Druck auch die Ausscheidung von Wasser. Dadurch wird sowohl der Elektrolythaushalt als auch der Blutdruck reguliert. Und auch hier kann natürlich mit Arzneistoffen eingegriffen werden, mit dem Aldosteron-Agonisten Fludrocortison oder verschiedenen Antagonisten, die als Diuretika eingesetzt werden.

Letztendlich sind da dann noch die Sexualhormone, die auch zu den Steroiden zählen und aus Cholesterin entstehen. Die Sexualhormone und alle in diesem Bereich wirkenden Arzneistoffe sind selbst ein so großes Thema, dass sie wohl einen eigenen Text verdienen (weshalb sie bald auch einen eigenen Beitrag von mir bekommen).

Das war ein (sehr kleiner) Überblick über die Isoprenoide und Steroide. Natürlich gäbe es noch weit mehr zu sagen, aber für den Moment möchte ich nur noch eine Sache erwähnen. Denn was wäre ein Text über Isoprenoide, ohne die Statine zu erwähnen. Das ist eine Klasse von Arzneistoffen, die sehr früh in der Biosynthese der Isoprenoide eingreifen, bei dem Enzym HMG-CoA-Reduktase. Das ist zuständig für die Herstellung von Mevalonat, aus dem dann wiederum die beiden Bausteine IPP und DMAPP gebildet werden. Durch die Hemmung der Herstellung dieser Bausteine wird die körpereigene Cholesterin-Synthese heruntergefahren und der LDL- Spiegel, also das „schlechte Cholesterin“ nimmt ab. Das macht die Statine sehr wichtig in der Behandlung und Prophylaxe von Herz-Kreislauf-Erkrankungen.

Das war es jetzt aber wirklich mit diesem Biomolekül (oder eher diesen Biomolekülen) des Monats. Wenn es euch gefallen hat, schaut euch doch gerne die Texte der letzten Monate an, oder abonniert meinen Newsletter, um nichts mehr zu verpassen.

Biomolekül des Monats: Das Ribosom

Ich denke, es ist schon in mehreren meiner Texte deutlich geworden, dass Proteine extrem wichtig, facettenreich und spannend sind. Laut der Deutschen Gesellschaft für Ernährung besteht jede:r von uns aus etwa 7 bis 13 kg davon. Und diese Menge an Proteinen muss erst einmal hergestellt werden. Deshalb besitzt jeder Mensch in etwa 100 Trillionen (also 100.000.000.000.000.000.000) Stück des Organells, das für die Biosynthese von Proteinen zuständig ist: Das Ribosom. In diesem Text möchte ich euch zeigen, wie Ribosomen funktionieren und kann euch hoffentlich einen Eindruck davon vermitteln, wieso ich sie so faszinierend finde.

Was sind Ribosomen, und wie funktionieren sie?

Obwohl das Ribosom bisher das bisher größte Biomolekül des Monats ist und wohl auch für einige Zeit bleiben wird, ist es für ein Organell ziemlich klein. Ribosomen haben gerade einmal einen Durchmesser von ca. 20 nm und ein Gewicht von 4,2 MDa (= Megadalton). Da steht für Dalton und ist eine Einheit, die oft für (Bio-)Moleküle verwendet wird. Ein Dalton entspricht ungefähr dem Gewicht eines Protons oder Neutrons. Ein Ribosom wiegt damit in etwa ein trillionstel Gramm.

Ribosomen stellen zwar Proteine her, bestehen aber zum Teil auch selbst aus Proteinen. Außerdem bestehen sie aus RNA, die deshalb rRNA (ribosomale RNA) genannt wird. Aufgebaut sind Ribosomen aus zwei Untereinheiten, einer großen und einer kleinen.

Cryo-EM Struktur eines menschlichen Ribosoms (Khatter et al. 2015, https://doi.org/10.1038/nature14427 )

Zwischen diesen Untereinheit können Ribosomen einen mRNA-Strang binden (wie bei einem Burger: die Untereinheiten sind die Brötchenhälften und die mRNA ist der Belag). Die mRNA transportiert die Information, die auf DNA gespeichert ist, aus dem Zellkern zu den Ribosomen in das Cytosol. Ribosomen können dann die Protein-Baupläne, die auf der mRNA als Basenabfolge codiert sind, in eine Aminosäuresequenz übersetzen – und das Protein dann auch gleichzeitig herstellen.

Dazu benutzten Ribosomen nochmal eine andere Art von RNA: die tRNA. Wenn das Ribosom der Übersetzer zwischen mRNA und Protein ist, dann ist die tRNA das Wörterbuch. Sie kann – innerhalb des Ribosoms – an die mRNA binden. Jeweils drei Basen in der mRNA codieren für eine Aminosäure in einem Protein. Diese drei Basen (das Codon) erkennt die tRNA, und an ihrem anderen Ende trägt sie die passende Aminosäure. Wenn die tRNA an die mRNA bindet, wird diese Aminosäure dann zu der wachsenden Kette aus Aminosäure hinzugefügt. Für eine ausführlichere Erklärung dieses Prozesses (der Translation) schaut doch gerne hier.

Animation der Funktionsweise eines Ribosoms: Die große UE ist grün, die kleine UE ist gelb. Die blauen tRNA-Moleküle binden an den mRNA-Strang und die Aminosäurekette wächst. (Quelle: Bensaccount at en.wikipedia, CC BY 3.0)

Ich möchte jetzt nämlich noch eines der (für mich) faszinierendsten Dinge in der Biologie ansprechen: Den Fakt, dass es nur 20 verschiedene Aminosäuren gibt, aus denen Proteine bestehen können. (Der eine oder die andere wird jetzt Fragen: was ist mit Pyrrolysin und Selenocystein, sollten es dann nicht 22 Aminosäuren sein? Und ja, das stimmt, aber die beiden sind Spezialfälle und wir ignorieren sie jetzt einfach.) Obwohl es nur diese 20 verschiedenen Aminosäuren gibt, besitzen allein Menschen um die 100.000 verschiedene Proteine. Die haben außerdem extrem unterschiedliche Aufgaben, z.B. als Enzyme, als Transporter, als Antikörper oder als Strukturproteine wie Keratin, aus dem Haare bestehen. Und trotzdem, obwohl es eine solche unglaubliche strukturelle und funktionelle Vielfalt gibt, bestehen diese 100.000 unterschiedlichen Proteine nur aus 20 verschiedenen Aminosäuren.

Ribosomen und Antibiotika

Weil das hier ein Blog über die Wissenschaft hinter Arzneimitteln ist, gibt es noch eine Sache, die ich unbedingt ansprechen muss: Das sind die Antibiotika, die an der Proteinbiosynthese angreifen. Davon gibt es tatsächlich auch eine ganze Menge, zum Beispiel Erythromycin, Tetracyclin oder Gentamicin.

Das ist möglich, weil sich die Ribosomen von Eukaryoten (Lebewesen, die Zellkerne besitzen) wie Menschen relativ stark von den Ribosomen von Bakterien unterscheiden. Die eukaryotischen Ribosomen werden als 80S Ribosomen bezeichnet. S steht für Svedberg und ist eine etwas umständliche Einheit, die (in diesem Fall) vor allem die Größe der Ribosomen beschreibt. (Genau genommen ist es die Einheit für den Sedimentationskoeffizienten. Der hängt neben der Masse eines Teilchen von dessen Form und den Wechselwirkungen mit dem Lösungsmittel ab. Da Form und Wechselwirkungen bei Ribosomen aber ähnlich sind, beschreibt es hier v.a. den Massenunterschied.)

Die eukaryotischen 80S Ribosomen bestehen aus einer 60S Untereinheit und einer 40S Untereinheit. Die bakteriellen Ribosomen dagegen sind kleiner, es sind 70S Ribosomen mit einer 50S und einer 30S Untereinheit. Dieser Unterschied im Aufbau der Ribosomen ermöglicht es, dass Antibiotika selektiv nur an bakteriellen Ribosomen wirken können. Dadurch wird die Proteinbiosynthese der Bakterien gestört und sie sterben ab, während menschliche Zellen unbeschadet bleiben.

Natürlich gäbe es zu Ribosomen noch sehr viel mehr zu sagen. Trotzdem soll es das mit diesem Biomolekül des Monats jetzt gewesen sein. Wenn es euch gefallen hat, dann lest gerne auch den Beitrag von letztem Monat oder abonniert meinen Newsletter, um nichts mehr zu verpassen (am Desktop auf der rechten Seite oder am Handy ganz unten)!

Biomolekül des Monats: Stickstoffmonoxid

Habt ihr euch schon einmal gefragt, was das kleinste bioaktive Molekül ist, das im menschlichen Körper gebildet wird? Es ist NO, also Stickstoffmonoxid. Und auch ansonsten ist NO ein eher ungewöhnliches Biomolekül. Außerdem ist ein zentraler Punkt in der Entstehung und der Therapie von Herz-Kreislauf-Erkrankungen. Daher möchte ich es euch diesen Monat vorstellen.

Stickstoffmonoxid

NO ist ein Signalmolekül. Es wird von Endothelzellen der Blutgefäße gebildet – das sind die Zellen, aus denen die Innenwände der Blutgefäße bestehen. Dieses Endothel ist umgeben von Muskelgewebe, das den Durchmesser der Blutgefäße steuert, und damit auch an der Regulation des Blutdrucks beteiligt ist. Stickstoffmonoxid ist eigentlich gasförmig, aber innerhalb von Zellen und im extrazellulären Medium liegt es gelöst vor. Nachdem es von den Endothelzellen freigesetzt wurde, breitet es sich durch Diffusion aus, bis es die Muskelzellen (glatte Muskelzellen, um genau zu sein) des Gefäßes erreicht. Dort kann es dann an ein Enzym binden, das lösliche Guanylatzyklase heißt. (Löslich deshalb, weil es gelöst im Zellinneren vorliegt, im Gegensatz zur membranständigen Guanylatzyklase, die an die Zellmembran gebunden ist.) Die Guanylatzyklase stellt den second messenger cGMP her, also einen weiteren Botenstoff, der dann dafür sorgt, dass die Muskelzellen relaxieren (= sich entspannen) und die Blutgefäße erweitert werden. Dadurch sinkt in dem entsprechenden Abschnitt der Blutdruck.

Struktur der löslichen Guanylatzyklase aus Manduca sexta als Bändermodell (Horst et al., eLife, 2019)

NO „lebt“ aber nicht besonders lang. Es ist – im Gegensatz zu den meisten anderen Biomolekülen – ziemlich reaktiv. Es reagiert innerhalb einiger Sekunden mit Sauerstoff und Wasser zu Nitrit (NO2) und Nitrat (NO3), die dann (fast) nicht mehr aktiv sind. Noch schneller reagiert es mit Superoxid-Anionen (O2·-). Bei oxidativem Stress werden mehr Superoxid-Anionen gebildet, und NO wird dadurch schneller abgebaut. Dadurch kommt es zu mehr verengten Gefäßen (und ein paar anderen Effekten wie Thrombozytenaggregation). Der oxidative Stress kann z.B. durch Rauchen oder Diabetes verursacht werden, und die Effekte auf die NO-Wirkung tragen zu einem erhöhten Risiko für kardiovaskuläre Erkrankungen bei.

Da Stickstoffmonoxid so einen großen Einfluss auf die Regulation der Blutgefäße hat, ist es aber auch ein guter Ansatzpunkt für Arzneistoffe. Weil diese Arzneistoffe im Körper NO freisetzen, bezeichnet man sie als NO-Donatoren. Einer davon ist Glyceroltrinitrat (umgangssprachlich Nitroglycerin) – ein Stoff, der sowohl als Arznei- als auch als Sprengstoff verwendet wird. Es wird nach der Einnahme enzymatisch gespalten, wodurch NO freigesetzt wird und seine Wirkung entfalten kann. Eingesetzt wird Glyceroltrinitrat bei Angina pectoris, einem straken Schmerz, der durch eine zu schwache Durchblutung des Herzens entsteht. Ich möchte hier nicht ausführlich auf die Wirkung von Glyceroltrinitrat/NO bei Angina pectoris eingehen (weil wahrscheinlich keiner von uns – am allerwenigsten ich –will, dass ich jetzt ausufernd die notwendige Hämodynamik erkläre), aber letztendlich ruft das freigesetzte NO eine Gefäßerweiterung hervor, wodurch das Herz wieder besser mit Blut versorgt wird.

Struktur von Glyceroltrinitrat

Obwohl ich mich jetzt vor allem auf die Wirkung von NO als Botenstoff in den Blutgefäßen konzentriert habe, hat es noch viele weitere Aufgaben. Zum Beispiel wird NO von Nervenzellen gebildet. Im peripheren Nervensystem (also überall außer im Gehirn und Rückenmark) wirkt NO sogar als Neurotransmitter, d.h. als Botenstoff, der Signale von einer Nervenzelle zur nächsten weiterleitet. Das macht NO aber ebenfalls nicht so wie „normale“ Neurotransmitter, die in der Synapse an membranständige Rezeptoren der postsynaptischen Nervenzelle binden. Stattdessen diffundiert NO in die postsynaptische Nervenzelle und interagiert dort wieder mit einem Enzym, wie bei der Guanylatzyklase auch. Aber auch Immunzellen produzieren NO, und zwar in so großen Mengen, dass es eine toxische Wirkung auf Bakterien oder Parasiten hat.

Das war das Biomolekül des Monats Juli. Wenn euch dieser Beitrag gefallen hat, dann abonniert doch gerne meinen Newsletter, damit ihr keinen neuen Blogbeitrag mehr verpasst (am Desktop auf der rechten Seite oder mobil ganz unten in der Fußzeile). Und hier geht es zum Biomolekül des letzten Monats.

Biomolekül des Monats: Der Tumorsuppressor p53

Ob lange Stränge aus DNA, riesige Proteine aus hunderten Aminosäuren oder kleine Moleküle aus wenigen Atomen: Biomoleküle haben unendlich viele faszinierende Aufgaben, um unsere Körper am Laufen zu halten. Daher stelle ich hier jeden Monat eines davon und seine Besonderheiten vor.

Krebserkrankungen sind meistens sehr komplex, jedoch haben sie alle eine gemeinsame Ursache: Veränderungen im Erbgut einer Zelle, der DNA. Solche Mutationen sind tatsächlich sehr häufig und können durch viele Faktoren ausgelöst werden. Aber glücklicherweise führen nicht alle Mutationen auch zur Entstehung von Tumoren. Denn unsere Zellen besitzen Schutzmechanismen, um genau das zu verhindern. Einer der wichtigsten ist ein Protein mit dem unscheinbaren Namen p53, das ich euch hier vorstellen möchte.

p53-Tetramer gebunden an DNA (Richard Wheeler (Zephyris) CC BY-SA 3.0)

p53 ist ein sogenannter Transkriptionsfaktor. Das sind Proteine, die die Übersetzung von DNA in mRNA regulieren. Letztendlich verhindern oder verstärken sie damit die Expression von bestimmten Proteinen.

Wenn die DNA beschädigt wird führt das dazu, dass sich p53 in der Zelle anreichert. Dadurch kann es dann seine Wirkung als Transkriptionsfaktor entfalten. Dazu gehört, dass p53 den Zellzyklus stoppt. Diesen Zyklus durchlaufen Zellen, bevor sie sich teilen können. Mit dem Stopp verhindert p53 also eine Vermehrung von Zellen mit kaputter DNA.

Das war aber noch nicht alles. Denn wenn sich sehr viel p53 angereichert hat, aktiviert es außerdem Proteine namens Bax. Bax leitet dann die Apoptose ein (bzw. verhindert Bax die Hemmung der Apoptose). Als Apoptose bezeichnet man den programmierten Zelltod, und damit wird letztendlich verhindert, dass sich aus einer Zelle mit irreparablen DNA-Schäden ein Tumor entwickelt.

Wie viele andere Prozesse in der Biologie auch ist die Einleitung der Apoptose ein ziemlich komplexer Signalweg, mit einer Reihe von Proteinen, die einander aktivieren (In kurz: p53 aktiviert Bax, dadurch wird Cytochrom c aus Mitochondrien freigesetzt, das zusammen mit APAF-1 die Caspase-9 aktiviert, die wiederum andere Caspasen aktiviert, die die Apoptose auslösen). Einerseits ist das natürlich gut, damit eine Zelle nicht einfach „ausversehen“ in den programmierten Zelltod geht. Andererseits erfüllen solche Signalkaskaden aber auch die wichtige Aufgabe, das Signal zu verstärken. Denn selbst wenn anfänglich nur wenig Bax aktiviert wird, aktiviert jeder Zwischenschritt dieser Reihe mehrere Proteine des nächsten Schritts, wodurch am Ende der Kaskade deutlich mehr aktivierte Proteine stehen.

Diese beiden Funktionen von p53, Zellzyklus-Arrest und Apoptose, spielen eine sehr wichtige Rolle bei der Verhinderung von Krebserkrankungen. Deshalb wird p53 auch als Tumorsuppressor bezeichnet, also als ein Tumor-unterdrückendes Protein. Im Gegenzug führt eine Mutation in dem Gen, in dem der Bauplan für p53 codiert ist (das TP53-Gen) aber auch dazu, dass die Entwicklung von Tumoren deutlich wahrscheinlicher wird, weil diese Schutzfunktion fehlt. Tatsächlich ist das oft eine Mit-Ursache für Krebs, und in etwa der Hälfte der Tumore ist das TP53-Gen mutiert.

Und einen kleinen Abstecher in die Pharmazie können wir an dieser Stelle auch noch machen: Wenn p53 in einer Krebszelle noch funktionsfähig ist, kann es ein starker Mitstreiter bei der Bekämpfung der Krebserkrankung sein. Denn viele Cytostatika wirken, indem sie die DNA von Krebszellen schädigen. Dadurch wird dann p53 aktiviert und führt zum Tod der Krebszelle. Allerdings bedeutet das auch, dass sich Krebserkrankungen, bei denen p53 mutiert ist, mit diesen Cytostatika weniger gut behandeln lassen.

Hier geht es zu allen Beiträgen aus der Kategorie Biomolekül des Monats

© 2024 PharmBlog

Theme by Anders NorenUp ↑

WordPress Cookie Notice by Real Cookie Banner