Eine der grundlegendsten Eigenschaften des Lebens auf der Erde ist der genetische Code. Egal bei welchem Lebewesen, wie der Bauplan von Proteinen auf der DNA als Erbinformation gespeichert wird, unterscheidet sich prinzipiell nicht. Trotzdem können wir den genetischen Code verändern und erweitern, und so maßgeschneiderte Proteine herstellen, die es in der Natur so nie geben könnte. Die Erweiterung des genetischen Codes kann uns helfen, nicht nur die Biologie besser zu verstehen, sondern auch effektivere Arzneimittel und Impfstoffe zu entwickeln.
Der Bauplan für Proteine
Bevor wir uns aber mit der Erweiterung des genetischen Codes beschäftigen können, sollten wir allerdings zuerst klären, worum es sich bei dem genetischen Code überhaupt handelt.
Unsere Erbinformation ist auf der DNA codiert, als Abfolge von vier möglichen Bausteinen: den Basen Adenin (A), Guanin (G), Thymin (T) und Cytosin (C). Exakter wäre es zwar, von den entsprechenden Nukleotiden zu sprechen, aber wir bleiben hier bei den Basen. Die Abfolge der Basen stellt einen Bauplan für Proteine dar, die diesem Plan folgend hergestellt werden. Dementsprechend müssen immer bestimmte Kombinationen von Basen für die Bausteine der Proteine, die Aminosäuren, stehen.
Tatsächlich codieren immer drei aufeinanderfolgende Basen – ein sogenanntes Codon – für eine Aminosäure. So können dann die 64 möglichen Codons in die 20 proteinogenen Aminosäuren übersetzt werden; immer zwei oder vier verschiedene Codons stehen für eine Aminosäure. Außerdem gibt es ein Codon, das die Aminosäure Methionin und gleichzeitig den Anfang eines Proteins anzeigt, sowie drei Codons, die das Ende eines Proteins bedeuten. (Die Tatsache, dass mehrere Codons für jeweils eine Aminosäure codieren, bezeichnet man übrigens als degenerierten genetischen Code.)
Dieses Prinzip und die Codierung der Aminosäuren sind bis auf ganz wenige Ausnahmen bei einzelnen Aminosäuren bei allen Lebewesen identisch. Das ermöglicht uns unter anderem, menschliche Proteine und Peptide wie Insulin in Bakterien herstellen zu können, sodass wir für die Behandlung von Diabetes nicht mehr auf Schweine-Insulin angewiesen sind.
Aber wir können auch darüber hinaus gehen. Mithilfe von cleveren Tricks können wir Aminosäuren genetisch codieren, die in der Natur nicht in Proteine eingebaut werden könnten oder sogar solche, die in der Natur gar nicht vorkommen.
Unnatürliche Aminosäuren
Am häufigsten wird dazu eine Technik namens stop codon suppression verwendet. Sie hat Parallelen in der Natur, wo die Aminosäuren Pyrrolysin und Selenocystein kein eigenes Codon besitzen, sondern über die Reprogrammierung eines Stop-Codons in Proteine eingebaut werden.
Für die stop codon suppression wird in ein Gen an der Stelle ein Stopcodon eingebaut, an der im fertigen Protein die unnatürliche Aminosäure sein soll. Wird dieses Protein von einer Zelle dann hergestellt, hört es an der Stelle des eingeführten Stopcodons nicht auf sondern enthält die gewünschte Aminosäure. Allerdings muss die Zelle über zwei Dinge verfügen: einerseits die unnatürliche Aminosäure, die – wie der Name schon sagt – nicht natürlich vorkommt und deshalb von außen zugeführt werden muss. Andererseits ein sogenanntes orthogonales tRNA-/Aminoacyl-tRNA-Synthetase-Paar. Das ist zwar ein echt komplizierter Begriff, bezeichnet aber eigentlich nur die Grundausstattung, die eine Zelle braucht, um Aminosäuren zu einem Protein zusammenzufügen.
Die tRNA erkennt mit ihrem einen Ende das Codon und trägt an ihrem anderen Ende die dazu passende Aminosäure. Dazu wurde sie zuvor von der Aminoacyl-tRNA-synthetase damit beladen. Und da eine Zelle normalerweise nicht über das entsprechende Paar für die unnatürliche Aminosäure verfügt, muss auch das gentechnisch in die Zelle eingebracht werden.
So beeindruckend das ist – Zellen Proteine mit unnatürlichen Aminosäuren herstellen zu lassen – funktioniert das aber leider nicht perfekt. Einerseits kommt das gewählte Stopcodon auch in endogenen Proteinen vor, und zwar tatsächlich als Stopsignal. Daher wird meistens das seltenste der Stopcodons verwendet, TAG oder auch Amber genannt. Außerdem steht die orthogonale tRNA in Konkurrenz mit der zelleigenen Maschinerie, die Stopcodons erkennt und die Proteinexpression beendet. Diesen Konkurrenzkampf verliert die tRNA auch meistens, weshalb Proteine mit unnatürlicher Aminosäure deutlich schlechter exprimiert werden (über den Daumen gepeilt etwa 10 % des Wildtyps). Daher gibt es zum Beispiel Ansätze, Releasing-Faktoren in Zellen auszuschalten, die normalerweise die Stopsignale vermitteln. Das führt dann aber oft dazu, dass die Lebensfähigkeit der Zellen so sehr beeinträchtigt wird, dass die Ausbeute genauso stark leidet.
Außerdem funktioniert das oft nur mit überexprimierten Proteinen. Diese wurden gentechnisch in Zellen eingebracht und es werden deutlich mehr von ihnen hergestellt als von den zelleigenen Proteinen. Wie man sich vorstellen kann, birgt das allerdings das Risiko, die Biologie der Zelle ganz schön durcheinander zu bringen. Es gibt aber seit neustem beispielsweise Möglichkeiten, die Sequenz endogener Proteine auf der RNA-Ebene zu verändern und so sehr effizient unnatürliche Aminosäuren in sie einzubauen, ohne sie überexprimieren zu müssen.
Neue Chemie für Proteine
Mittels stop codon suppression können wir also unnatürliche Aminosäuren in Proteine einbauen. Aber was bringt das jetzt?
Auf der grundlegendsten Ebene geht es darum, Proteinen neue chemische Möglichkeiten zu geben. Denn die Chemie der Aminosäuren ist begrenzt – es gibt ein paar sehr unspektakuläre hydrophobe, einige hydrophile, manche sind sauer oder basisch, ein paar sind nukleophil, können oxidiert oder reduziert werden. Damit schaffen es Proteine zwar, eine unglaublich Fülle an Funktionen zu erfüllen, aber um es mal sehr plakativ zu sagen: Proteine können fast nur Chemie aus der Grundlagen-Vorlesung.
Daher nutzen wir die Erweiterung des genetischen Codes, um Proteinen neue chemische Möglichkeiten beizubringen. Damit eignen sie sich zum Beispiel deutlich besser für manche therapeutische Anwendungen. Bevor wir es darum geht, möchte ich euch aber einige andere Anwendungen des erweiterten genetischen Codes kurz vorstellen.
Erweiterung des genetischen Codes in der Forschung
Unnatürliche Aminosäuren sind wertvolle Werkzeuge in der biochemischen und molekularbiologischen Forschung.
In meinem letzten Blogpost habe ich viel darüber geschrieben, wie nützlich die Markierung von Proteinen mit Fluoreszenzproteinen ist. Unnatürliche Aminosäuren sind auch als Fluoreszenzmarker geeignet – statt aber einfach ein Protein damit zu markieren, kann der Fluoreszenzfarbstoff ganz gezielt an einzelnen Positionen des Zielproteins eingebracht werden. Das ist entweder direkt über fluoreszierende Aminosäuren möglich oder über den Einbau eines click handle. An einer solchen Aminosäure können dann direkt in der Zelle alle möglichen Moleküle befestigt werden.
Abgesehen von Fluoreszenz können Proteine über stop codon suppression auch mit anderen Markierungen versehen werden. Ein Beispiels sind sogenannte spin label für Techniken wie EPR, über die ich auch schon geschrieben habe. Außerdem können Crosslinker eingebaut werden, die ein Protein kovalent mit einem anderen Biomolekül verbinden, lichtgesteuerte Aminosäuren oder auch Nachahmungen posttranslationaler Modifikationen.
Und außerdem existiert noch die Möglichkeit des enzyme engineerings mit unnatürlichen Aminosäuren. Dabei wird die Erweiterung des genetischen Codes genutzt, um die chemischen Möglichkeiten von Enzymen zu erweitern und sie zu maßgeschneiderten Katalysatoren für bestimmte chemische Reaktionen zu machen.
Diese Anwendungen des erweiterten genetischen Codes sind eine Möglichkeit, neue oder bessere Arzneistoffe zu finden – nämlich indirekt, indem unnatürliche Aminosäuren als Werkzeuge in der Charakterisierung von Targets oder Entwicklung, Validierung und Synthese von Arzneistoffen eingesetzt werden. Aber auch der direkte Einsatz eines erweiterten genetischen Codes in Arzneimitteln ist möglich, und einige Beispiele möchte ich euch gerne vorstellen:
Antikörper und Protein-Arzneistoffe
Das derzeit wohl vielversprechendste Einsatzgebiet von unnatürlichen Aminosäuren in der Arzneitherapie sind Antikörper-Wirkstoff-Konjugate (kurz ADC, antibody-drug-conjugates). Solche ADC werden vorwiegend für die Krebstherapie eingesetzt und erforscht, denn die sehr spezifischen Antikörper bringen die oft nebenwirkungsreichen Wirkstoffe direkt zu den Tumorzellen. Dadurch kann eine Therapie bei gegebener Dosis effektiver sein, während durch die geringeren Nebenwirkungen gleichzeitig höhere Dosen möglich sind.
Um ADC herzustellen, müssen die Antikörper und Wirkstoffe auf irgendeine Art verbunden werden. Noch werden dazu meist unspezifische Methoden verwendet, jedoch entstehen dadurch sehr heterogene ADC mit einer unterschiedlichen Anzahl von Wirkstoffmolekülen, die an unterschiedlichen Stellen an die Antikörper gebunden sind.
Es ist aber auch möglich, die Wirkstoffe über unnatürliche Aminosäuren an die Antikörper zu binden, die mittels stop codon suppression sehr kontrolliert in die Antikörper eingebaut werden können. Während es zwar noch keine ADC mit dieser Technologie in der Klinik gibt, könnten so Antikörper-Wirkstoff-Konjugate mit größerer Effektivität, geringerer Toxizität und einigen anderen positiven Eigenschaften (vor allem solche pharmakokinetischer Art) hergestellt werden als bei den bisherigen heterogenen ADC.
Auf ähnliche Weise wie Antikörper über unnatürliche Aminosäuren mit Wirkstoffen verbunden werden, können auch zwei Antikörper oder Antikörper-Fragmente verknüpft werden. Dadurch erhält man bispezifische Antikörper, die an zwei Ziele binden können. Eines davon kann beispielsweise das Oberflächenprotein einer Tumorzelle sein, während das andere auf einer Immunzelle zu finden ist. Der bispezifische Antikörper bringt die Tumor- und die Immunzelle so für längere Zeit in direkte räumliche Nähe und fördert die Zerstörung der Tumorzelle durch die Immunzelle.
Abgesehen von Antikörpern werden auch andere Protein-Arzneistoffe mit unnatürlichen Aminosäuren erforscht. Eine Option sind Proteine, die spezifisch mit einer Zielstruktur – normalerweise einem anderen Protein – interagieren und deren Funktion dadurch hemmen. Für eine verlängerte Wirkdauer und ein vergrößertes therapeutisches Fenster können diese Protein-Arzneistoffe über eine unnatürliche Aminosäure kovalent mit der Zielstruktur verbunden werden. Diese kovalente Bindung ist stärker und stabiler als normale Interaktionen zwischen zwei Molekülen, wodurch die Hemmung effektiver und länger anhaltend ist. Für die Chemie-Interessierten: Als Aminosäure werden dabei normalerweise elektrophile Moleküle verwendet, die mit nukleophilen Aminosäuren wie Cystein oder Lysin im Zielprotein reagieren.
Unnatürliche Aminosäuren in der Klinik?
Weiter therapeutische Anwendungen des erweiterten genetischen Codes möchte ich nur kurz anreißen. Dazu gehört eine bessere Regulierung von CAR-T-Zellen – genetisch veränderte Immunzellen in der Krebstherapie, über dich ich hier auch schon geschrieben habe, verbesserte Impfstoffe, bei denen Aminosäuren verwendet werden, die eine stärkere Immunreaktion hervorrufen oder auch mögliche Gentherapien in vivo, die aber noch weit in der Zukunft liegen.
Ganz allgemein wird mit der Erweiterung des genetischen Codes für therapeutische Zwecke gerade erst begonnen. Für viele Ansätze existieren überzeugende experimentelle Belege oder auch erste Studien in Tiermodellen, aber bis Arzneistoffe mit unnatürlichen Aminosäuren standardmäßig in der Klinik zu finden sein werden, wird noch einige Zeit vergehen müssen. Ihre Bedeutung wird wahrscheinlich eher in bestimmten, eher spezialisierten Fällen zu finden sein. Es werden wohl kaum reihenweise kovalente Proteinarzneistoffe auftauchen, aber ich denke, ab und an wird die Verwendung unnatürlicher Aminosäuren eine Arzneitherapie definitiv verbessern oder erst ermöglichen können.
—
Falls euch dieser Text gefallen hat, empfehlt ihn doch gerne weiter, folgt PharmBlog auf Social Media oder abonniert meinen Newsletter, um keinen Blogpost mehr zu verpassen!